DOI QR코드

DOI QR Code

Material Flow Analysis for Stable Supply and Demand Management of Tin

주석의 안정적 수급관리를 위한 물질흐름분석

  • Sang Hyun Oh (Program in Circular Economy Environmental System, Graduate School, Inha University) ;
  • Hong-Yoon Kang (Program in Circular Economy Environmental System, Graduate School, Inha University) ;
  • Yong Woo Hwang (Department of Environmental Engineering, Inha University) ;
  • Doo Hwan Kim (Program in Circular Economy Environmental System, Graduate School, Inha University) ;
  • Kayoung Shin (Program in Circular Economy Environmental System, Graduate School, Inha University) ;
  • Nam Seok Kim (Program in Circular Economy Environmental System, Graduate School, Inha University)
  • 오상현 (인하대학교 순환경제환경시스템전공) ;
  • 강홍윤 (인하대학교 순환경제환경시스템전공) ;
  • 황용우 (인하대학교 환경공학과) ;
  • 김두환 (인하대학교 순환경제환경시스템전공) ;
  • 신가영 (인하대학교 순환경제환경시스템전공) ;
  • 김남석 (인하대학교 순환경제환경시스템전공)
  • Received : 2023.05.30
  • Accepted : 2023.06.29
  • Published : 2023.08.31

Abstract

There has been a rapid increase in metal prices in recent times, due to global competition to acquire rare metal resources, as well as the resource weaponization policies of resource-rich countries. Some resource-rich countries are strengthening export controls and taxation through protectionist trade policies, enhancing instability in the supply of minerals. Futhermore, the current global reserves and mining amounts of tin are 4.9 million tons and 4.6 million tons, respectively, with an estimated reserve life of 15.3 years. Considering these circumstances, this study conducted a material flow analysis to examine the fluctuation of tin on an annual basis and analyze relevant industry trends. Through this, we aim to achieve stable management of tin, which is a not only a limited resource but also designated as a conflict mineral. The results of the material flow analysis indicate that tin, due to its low melting point and corrosion resistance, is widely used as a key material in industries, such as electrical and electronics, display, and steel industries. Among these products, printed circuit boards, metal products, and gas sensors experienced significant fluctuations in 2021. In particular, printed circuit boards witnessed a 55% increase, as compared to 2018. Furthermore, printed circuit boards accounted for 47%, or 5,625 tons out of 11,963 tons, of the flow of intermediate products in primary processed goods. Currently, the global market size of printed circuit boards is growing consistently, and domestic demand is also increasing. However, in 2021, the resource circulation and recycling rates of tin declined slightly to 4.3% and 27.5%, respectively, compared to 5.1% and 29.6% in 2018. This suggests the need for the recovery of tin within printed circuit boards, from the perspective of resource circulation and recycling rates. Therefore, in this study, we conducted a comparative analysis of the material flow of tin in both, 2018 and 2021, to derive key implications and propose measures to improve the rate of its resource circulation and recycling.

최근 희유금속자원 확보의 글로벌 경쟁 및 자원보유국의 자원무기화 정책에 따라, 금속 가격이 급격히 상승하였다. 일부 자원보유국은 보호무역주의로 수출 통제 및 과세를 강화하며, 이로 인해 광물의 공급 불안정성이 심화되고 있다. 또한 전 세계 주석 부존량과 채굴량은 각각 490만 ton, 460만 ton으로 가채연수는 15.3년이 남은 것으로 나타났다. 이에 본 연구에서는 한정된 자원이며, 분쟁광물로 지정된 주석의 안정적 관리 및 자원생산성 향상을 위해 물질흐름분석을 기반으로 주석의 연도별 변동 현황과 관련 산업동향을 분석하였다. 물질흐름분석 결과, 주석은 낮은 융점과 내부식성의 특성으로 인해 땜납, 주석도금강판, ITO 타겟 등 전기·전자산업, 디스플레이 산업, 철강산업 등에 핵심소재로 쓰이고 있는 것으로 나타났다. 이 중 '21년 큰 변동 폭을 보인 품목은 인쇄회로기판, 금속제품, 가스 센서로 나타났으며, 특히 인쇄회로기판은 '18년 대비 '21년 약 55%로 큰 폭으로 증가하였다. 또한 1차 가공제품에서 중간제품의 흐름의 총 11,963 ton 중 인쇄회로기판의 흐름은 5,625 ton으로 약 47%를 차지하고 있다. 현재 인쇄회로기판은 전세계적으로 시장규모가 지속적으로 증가하고 있으며, 국내 수요 또한 증가하고 있다. 하지만 '21년 주석의 자원순환율, 재자원화율은 '21년 각각 4.3%, 27.5%로 '18년 5.1%, 29.6% 대비 소폭 감소한 것으로 산정되었다. 이는 주석의 자원순환율과 재자원화율 관점에서 인쇄회로기판 내 주석의 회수가 필요하다는 것을 시사한다. 이에 본 연구에서는 '18년, '21년 주석의 물질흐름 비교분석을 통해, 주요 시사점을 도출하고 주석의 자원순환율 및 재자원화율 향상방안을 제시하였다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(P0008421, 2023년 산업전문인력역량강화사업)과 산업통상자원부 "자원생산성 기반 구축사업"의 지원으로 수행된 연구임.

References

  1. H. S. Lee, J. M. Lee, S. R. Yi, 2018 : Resource Circulation Plan using Material Flow Analysis of Waste Metals of Cobalt and Palladium, J. of Kor. Inst. of Resource Recycling, 27(1), pp.14-21.
  2. Y. H. Kim, S. H. Son, H. S. Choi, et al., 2014 : Trend on Recycling Technologies of Tin Scrap by Material Flows and Patent Analysis, J. of Kor. Inst. of Resource Recycling, 23(3), pp.61-70. https://doi.org/10.7844/kirr.2014.23.3.61
  3. T. H. Kim, J. M. Park, 2021 : Analysis of strategies for securing core minerals in major countries, pp.53-59, Korea Energy Economics Institute.
  4. M. H. Lee, 2022 : ISSUE REPORT Semiconductor industry export outlook in 2022, pp.1-10, Korea Eximbank.
  5. Y. S. Heo, 2022 : Gas sensor, pp.4-5, ASTI MARKET INSIGHT, Korea Institute of Science and Technology Information.
  6. EU Commission, Commission announces actions to make Europe's raw materials supply more secure and sustainable, https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1542, April 20, 2023.
  7. Korea International Trade Association Brussels Branch, 2023 : Main contents of the EU Critical Raw Materials Act, pp.1-6, Avenue Louise 66, 1050 Brussels, Belgium.
  8. T. H. Kim, J. M. Park, 2021 : Analysis of strategies for securing core minerals in major countries, pp.44-46, Korea Energy Economics Institute.
  9. Ministry of Environment, 2018 : The 1st Resource Circulation Basic Plan (2018~2027), pp.2-10.
  10. J. G. Kim, 2013 : Material flow and industrial demand for palladium in Korea, Resources, Conservation and Recycling, 77, pp.24-28. https://doi.org/10.1016/j.resconrec.2013.04.009
  11. I. S. Lee, J. G. Kim, 2014 : Industrial demand and integrated material flow of terbium in Korea, International Journal of Precision Engineering and Manufacturing-Green Technology, 1, pp.145-152. https://doi.org/10.1007/s40684-014-0019-y
  12. J. W. Kim, J. Y. Moon, Y. W. Hwang, et al, 2016 : Chemical flow analysis of butadiene chemical material industry in Korea, J. of Korea Society of Waste Management, 33(7), pp.645-653. https://doi.org/10.9786/kswm.2016.33.7.645
  13. J. C. Park, Y. W. Hwang, J. B. Kim, et al., 2020 : Material Flow Analysis of Trichloroethylene in Korea, J. of Korean Society of Environmental Engineers, 42(4), pp.188-196. https://doi.org/10.4491/KSEE.2020.42.4.188
  14. H. J. Ko, J. G. Kim, I. S. Lee, et al., 2013 : Investigation of material flow and industrial trend of domestic europium, J. Kor. Powd. Inst, 20(5), pp.382-387. https://doi.org/10.4150/KPMI.2013.20.5.382
  15. J. G. Kim, 2011 : Investigation on material flow in indium demand industry, J. Kor. Powd. Inst, 18(4), pp.313-321. https://doi.org/10.4150/KPMI.2011.18.4.313
  16. H. S. Lee, J. M. Lee, S. R. Yi, 2018 : Resource Circulation plan using material flow analysis of waste metals of cobalt and palladium, J. of Kor. Inst. of Resource Recycling, 27(1), pp.14-21.
  17. S. R. Lee, M. S. Lee, H. Y. Kim, 2015 : Recovery of high purity Sn by Multi-step reduction of Sn-containing industrial wastes, J. of Kor. Inst. of Resource Recycling, 24(3), pp.11-15. https://doi.org/10.7844/kirr.2015.24.3.11
  18. Y. H. Jin, D. H. Jang, H. C. Jung, et al., 2014 : Development of Pre-teratment for Tin recovery from waste resources, J. Kor. Powd. Inst, 21(2), pp.142-146. https://doi.org/10.4150/KPMI.2014.21.2.142
  19. H. D. Li, W. Q. Qin, J. H. Li, et al., 2021 : Tracing the global tin flow network : highly concentrated production and consumption, Resources, Conservation & Recycling, 169, 105495.
  20. C. R. Yang, Q. Y. Tan, X. L. Zeng, et al., 2018 : Measuring the sustainability of tin in china, Science of the Total Environment, 635, pp.1351-1359. https://doi.org/10.1016/j.scitotenv.2018.04.073
  21. Korea-Material Flow Analysis, http://k-mfa.kr/, April 1, 2023.
  22. J. Y. Shin., 2022 : Hyunwoo industrial(IT parts), pp.4-11, Korea IR Council.
  23. H. L. An, L. S. Kang, C. G. Lee, 2017 : Analysis of commercial recycling technology and research trend of printed circuit boards in Korea, J. of Kor. Inst. of Resource Recycling, 26(4), pp.9-18.
  24. J. K. Jeong, J. C. Lee, J. C. Choi, 2015 : Characterization of metal composition in spent printed circuit boards of mobile phones, J. of Kor. Inst. of Resource Recycling, 24(3), pp.76-80. https://doi.org/10.7844/kirr.2015.24.3.76
  25. THEELEC, https://www.thelec.kr/news/articleView.html?idxno=12852, Jun 22, 2023.
  26. J. Q, BoardsYang, J. Lei, S. Y. Peng, et al., 2016 : Membrane electrodeposition process for tin recovery from waste PCB, J. of Hazardous Materials, 304, pp.409-416. https://doi.org/10.1016/j.jhazmat.2015.11.007
  27. L. A. Castro, A. H. Martins, 2009 : Recovery of tin and copper by recycling of printed circuit boards from obsolete computers, Brazilian Journal of Chemical Engineering, 26(4), pp.649-657. https://doi.org/10.1590/S0104-66322009000400003
  28. T. Z. Yang, P. C. Zhu, W. F. Liu, et al., 2017 : Recovery of tin from metal powders of waste printed circuit boards, Waste Management, 68, pp.449-457. https://doi.org/10.1016/j.wasman.2017.06.019
  29. U.S. Geological Survey, 2023 : Mineral commodity summaries 2023, pp.182-183, United States Government Printing Office, USA.