References
- A. Kraytsberg, Y. Ein-Eli, 2012 : Higher, stronger, better... A review of 5V cathode materials for advanced lithium-ion batteries, Advanced Energy Materials, 2(8), pp.922-939. https://doi.org/10.1002/aenm.201200068
- A. K. Awasthi, J. Li, 2017 : An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE, Resour. Conserv. Recycl., 126, pp.228-239. https://doi.org/10.1016/j.resconrec.2017.07.014
- J. Neumann, M. Petranikova, M. Meeus, et al., 2022 : Recycling of Lithium-Ion Batteries-Current State of the Art, Circular Economy, and Next Generation Recycling, Adv. Energy Mater., 12, 2102917, pp.1-26. https://doi.org/10.1002/aenm.202102917
- J. Xiao, J. Li, Z. Xu, 2020 : Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives, Environmental Science and Technology, 54(1), pp.9-25. https://doi.org/10.1021/acs.est.9b03725
- K. Yoo, 2023 : Lithium Ion Battery Recycling Industry in South Korea, Resources Recycling, 32(1), pp.13-20.
- J. C. Jung, P. Sui, J. Zhang, 2021 : A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments, Journal of Energy Storage, 35, pp.102217.
- T. Or, S. W. D Gourley, K. Kaliyappan, et al., 2020 : Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook, Carbon Energy, 2(1), pp.6-43. https://doi.org/10.1002/cey2.29
- P. Meshram, B. D. Pandey, T. R. Mankhand, 2015 : Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects, Waste Management, 45, pp.306-313. https://doi.org/10.1016/j.wasman.2015.05.027
- K. Tanong, L. Coudert, G. Mercier, et al., 2016 : Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process, J. Environ. Manage., 181, pp.95-107. https://doi.org/10.1016/j.jenvman.2016.05.084
- F. Wang, R. Sun, J. Xu, et al., 2016 : Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction, RSC Adv., 6, pp.85303-85311. https://doi.org/10.1039/C6RA16801A
- J. O. Demarco, J. S. Cadore, F. S. Oliveira, et al., 2019 : Recovery of metals from spent lithium-ion batteries using organic acids. Hydrometallurgy, 190, pp.105-169. https://doi.org/10.1016/j.hydromet.2019.105169
- P. Meshram, A. Mishra, Abhilash, et al., 2020 : Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids-A review, Chemosphere, 242, pp.125291.
- R. Golmohammadzadeh, F. Faraji, F. Rashchi, 2018 : Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136, pp.418-435. https://doi.org/10.1016/j.resconrec.2018.04.024
- B. Musariri, G. Akdogan, C. Dorfling, et al., 2019 : Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries, Miner. Eng., 137, pp.108-117. https://doi.org/10.1016/j.mineng.2019.03.027
- E. Gerold, C. Schinnerl, H. Antrekowitsch, 2022 : Critical Evaluation of the Potential of Organic Acids for the Environmentally Friendly Recycling of Spent Lithium-Ion Batteries, Recycling, 7(1), pp.4.
- R. Golmohammadzadeh, F. Faraji, F. Rashchi, 2018 : Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136, pp.418-435. https://doi.org/10.1016/j.resconrec.2018.04.024
- L. Li, E. Fan, Y. Guan, et al., 2017 : Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system, ACS Sustainable Chem. Eng., 5(6), pp.5224.
- X. Liu, K. Huang, H. Xiong, et al., 2023 : Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries, Environ. Technol., 44(2), pp.211-225.
- X. Zheng, W. Gao, X. Zhang, et al., 2017 : Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite, Waste Manag., 60, pp.680-688. https://doi.org/10.1016/j.wasman.2016.12.007
- Y. Chen, N. Liu, F. Hu, et al., 2018 : Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries, Waste Manag., 75, pp.469-476. https://doi.org/10.1016/j.wasman.2018.02.024
- P. Meshram, Abhilash, B. D. Pandey, et al., 2016 : Comparision of different reductants in leaching of spent lithium ion batteries, JOM, 68(10), pp.2613-2623. https://doi.org/10.1007/s11837-016-2032-9
- N. Vieceli, C. A. Nogueira, C. Guimaraes, et al.,, 2018 : Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite, Waste Manage., 71, pp.350-361. https://doi.org/10.1016/j.wasman.2017.09.032
- Q. Meng, Y. Zhang, P. Dong, 2017 : Use of glucose as reductant to recover Co from spent lithium ions batteries, Waste Manag., 64, pp.214-218. https://doi.org/10.1016/j.wasman.2017.03.017
- X. Xiao, B. W. Hoogendoorn, Y. Ma, et al., 2021 : Ultrasound-assisted extraction of metals from Lithium-ion batteries using natural organic acids, Green Chem., 23, pp.8519.
- J. Sedlakova-Kadukova, R. Marcincakova, A. Luptakova, et al., 2020 : Comparison of three different bioleaching systems for Li recovery from lepidolite, Sci. Rep., 10, pp.14594.
- A. Isildar, E. D. Hullebusch, M. Lenz, et al., 2019 : Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment(WEEE)-A review, J. Hazard. Mater., 362, pp.467-481. https://doi.org/10.1016/j.jhazmat.2018.08.050
- J. J. Roy, B. Cao, S. Madhavi, 2021 : A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach, Chemosphere, 282, pp.130944.
- J. Jegan Roy, M. Srinivasan, B. Cao, 2021 : Bioleaching as an Eco-Friendly Approach for Metal Recovery from Spent NMC-Based Lithium-Ion Batteries at a High Pulp Density, ACS Sustainable Chem. Eng., 9, pp.3060.
- N. B. Horeh, S. M. Mousavi and S. A. Shojaosadati, 2016 : Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, J. Power Sources, 320, pp.257-266. https://doi.org/10.1016/j.jpowsour.2016.04.104
- N. Bahaloo-Horeh and S. M. Mousavi, 2017 : Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger, Waste Manag., 60, pp.666-679. https://doi.org/10.1016/j.wasman.2016.10.034
- B. C. Behera, 2020 : Citric acid from Aspergillus niger: a comprehensive overview, Critical Reviews in Microbiology, 46(6), pp.1.
- A. Zhu, X. Bian, W. Han, et al., 2023 : The application of deep eutectic solvents in lithium-ion battery recycling: a comprehensive review, Resources, conservation, and recycling, 188, pp.106690.
- Y. Fan, Y. Kong, P. Jiang, et al., 2023 : Development and challenges of deep eutectic solvents for cathode recycling of end-of-life lithium-ion batteries, Chemical Engineering Journal, 463(1), pp.142278.
- Y. Luo, C. Yin, L. Ou, et al., 2022 : Highly efficient dissolution of the cathode materials of spent Ni-Co-Mn lithium batteries using deep eutectic solvents, Green Chemistry, 17, pp.6562-6570. https://doi.org/10.1039/D2GC01431A
- S. Virolainen, T. Wesselborg, A. Kaukinen, et al., 2021 : Removal of iron, aluminium, manganese and copper from leach solutions of lithium-ion battery waste using ion exchange, Hydrometallurgy, 202, pp.105602.
- D. Morin, C. Gagnebourque, E. Nadeau, et al., 2019, WO. 2019060996A1.
- H. Wang, B. Friedrich, 2015 : Development of a highly efficient hydrometallurgical recycling process for automotive Li-ion batteries, J. Sustain. Metal. 1, pp.168-178. https://doi.org/10.1007/s40831-015-0016-6
- B. Davis, K. Watson, A. Roy, et al., 2019 : Li-cycle-a case study in integrated process development, REWAS2019, MMMS, pp.247-260, The Minerals, Metals & Materials Society 2019, Springer Cham.
- X. Chen, Y. Chen, T. Zhou, et al., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manag., 38, pp.349-356. https://doi.org/10.1016/j.wasman.2014.12.023
- X. Zhang, L. Li, E. Fan, et al., 2018 : Toward sustainable and systematic recycling of spent rechargeable batteries, Chem. Soc. Rev. 47(19), pp.7239-7302. https://doi.org/10.1039/C8CS00297E
- W. Lv, Z. Wang, H. Cao, et al., 2018 : A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries, ACS Sustainable Chem. Eng., 6, pp.1504-1521. https://doi.org/10.1021/acssuschemeng.7b03811
- S. Virolainen, M. F. Fini, A. Laitinen, et al., 2017 : Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co, Sep. Purif. Technol., 179, pp.274-282. https://doi.org/10.1016/j.seppur.2017.02.010
- S. Lei, W. Sun, Y. Yang, 2022 : Solvent extraction for recycling of spent lithium-ion batteries, Journal of Hazardous Materials, 424, pp.127654.
- B. Swain, J. Jeong, J. Lee, et al., 2007 : Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries, J. Power Sources, 167(2), pp.536-544. https://doi.org/10.1016/j.jpowsour.2007.02.046
- A. K. Jha, M. K. Jha, A. Kumari, et al., 2013 : Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant, Sep. Purif. Technol., 104, pp.160-166. https://doi.org/10.1016/j.seppur.2012.11.024
- S. Joo, D. J. Shin, C. H. Oh, et al., 2016 : Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I, Hydrometallurgy, 159, pp.65-74. https://doi.org/10.1016/j.hydromet.2015.10.012
- K. Y. Wang, B. C. Cheng, W. Y. Shu, 1991 : Solvent extraction chemistry, Central South University of Technology, Hunan.
- X. Chen, Y. Chen, T. Zhou, et al., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manag., 38, pp.349-356. https://doi.org/10.1016/j.wasman.2014.12.023
- Y. Yamaguchi, J. Hino, 2009, JP. 2009193778A.
- A. B. Botelho Junior, S. Stopic, B. Friedrich, et al., 2021 : Cobalt Recovery from Li-Ion Battery Recycling: A Critical Review, Metals, 11(12), pp.1999.
- X. Lin, X. Wang, G. Liu, et al., 2022 : Recycling of Power Lithium-Ion Batteries, Wiley-VCH, Weinheim.
- Y. Yang, S. Lei, S. Song, et al., 2020 : Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Waste Manag., 102, pp.131-138. https://doi.org/10.1016/j.wasman.2019.09.044
- W. Chen, H. Ho, 2018 : Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods, Metals 8(5), pp.321.
- J. Zhao, X. Y. Shen, F. L. Deng, et al., 2011 : Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A, Sep. Purif. Technol., 78, pp.345-351. https://doi.org/10.1016/j.seppur.2010.12.024
- Y. Yang, S. Xu, Y. He, 2017 : Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag., 64, pp.219-227. https://doi.org/10.1016/j.wasman.2017.03.018
- L. Shuya, C. Yang, C. Xuefeng, et al., 2020 : Separation of lithium and transition metals from leachate of spent lithiumion batteries by solvent extraction method with Versatic 10, Separation and Purification Technology, 250, pp.117258.
- E. Y. Kim, E. O, Bae, S. K. Jang, 2022, KR. 10-2022-0057136.
- T. Liu, J. Chen, X. Shen, et al., 2021 : Regulating and regenerating the valuable metals from the cathode materials in lithium-ion batteries by nickel-cobalt-manganese co-extraction, Sep. Purif. Technol., 259, pp.118088.
- Y. Cho, K. Kim, J. Ahn, 2021 : Recovery of Co and Ni from Strong Acidic Solution by Cyanex 301, Resources Recycling, 30(6), pp.28-35. https://doi.org/10.7844/KIRR.2021.30.6.28
- C. H. Jung, S.W. Park, 2021, KR. 10-2324910.
- K. H. Kim, 2023 : A Study on the Separation of Valuable Metals in Waste Lithium Secondary Batteries by Preloading Solvent Extraction Method, Master's thesis, Daejin University.
- M. C. Olivier, C. Dorfling, J. J. Eksteen, 2012 : Evaluating a solvent extraction process route incorporating nickel preloading of Cyanex 272 for the removal of cobalt and iron from nickel sulphate solutions, Minerals Engineering, 27-28, pp.37-51. https://doi.org/10.1016/j.mineng.2011.12.006
- X. Chen, B. Xu, T. Zhou, et al., 2015 : Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries, Separation and Purification Technology, 144, pp.197-205. https://doi.org/10.1016/j.seppur.2015.02.006
- X. Chen, Y. Chen, T. Zhou, et al., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Management, 38, pp.349-356. https://doi.org/10.1016/j.wasman.2014.12.023
- D. H. Kim, Y. H. Kim, W. J Kim, 2022, KR. 10-2471399.
- H. Zou, E. Gratz, D. Apelian, et al., 2013 : A novel method to recycle mixed cathode materials for lithium ion batteries, Green Chem., 15(5), pp.1183-1191. https://doi.org/10.1039/c3gc40182k
- Z. Zheng, M. Chen, Q. Wang, et al., 2018 : High Performance Cathode Recovery from Different Electric Vehicle Recycling Streams, ACS Sustain. Chem. Eng., 6(11), pp.13977-13982. https://doi.org/10.1021/acssuschemeng.8b02405
- F. Larouche, F. Tedjar, K. Amouzegar, et al., 2020 : Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond, Materials, 13(3), pp.801.
- E. Gratz, Q. Sa, D. Apelian, et al., 2014 : A closed loop process for recycling spent lithium ion batteries. J. Power Sources, 262, pp.255-262. https://doi.org/10.1016/j.jpowsour.2014.03.126
- M. Chen, Z. Zheng, Q. Wang, et al., 2019 : Closed Loop Recycling of Electric Vehicle Batteries to Enable Ultra-high Quality Cathode Powder, Sci Rep., 9, pp.1654. https://doi.org/10.1038/s41598-018-38238-3
- Y. Weng, S. Xu, G. Huang, et al., 2013 : Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries, Journal of Hazardous Materials, 246-247, pp.163-172. https://doi.org/10.1016/j.jhazmat.2012.12.028
- J. Fang, Z. Ding, Y. Ling, et al., 2022 : Green recycling and regeneration of LiNi0.5Co0.2Mn0.3O2 from spent Lithium-ion batteries assisted by sodium sulfate electrolysis, Chemical Engineering Journal, 440, pp.135880.
- L. He, S. Sun, J. Yu, 2018 : Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ionbatteries by a carbonate co-precipitation method, Ceramics International, 44(1), pp.351-357. https://doi.org/10.1016/j.ceramint.2017.09.180
- Y. Cho, K. Kim, J. Ahn, 2022 : Application of Electromembrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process, Resources Recycling, 31(5), pp.1-18. https://doi.org/10.7844/kirr.2022.31.5.3