Acknowledgement
The first named author was supported by the National Research Foundation of Korea: NRF-2020R1F1A1A01068699.
References
- V. Balaji and C. S. Seshadri, Semistable principal bundles. I. Characteristic zero, J. Algebra 258 (2002), no. 1, 321-347. https://doi.org/10.1016/S0021-8693(02)00502-1
- A. Beauville, Orthogonal bundles on curves and theta functions, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 5, 1405-1418. https://doi.org/10.5802/aif.2216
- A. Beauville, Y. Laszlo, and C. Sorger, The Picard group of the moduli of G-bundles on a curve, Compositio Math. 112 (1998), no. 2, 183-216. https://doi.org/10.1023/A:1000477122220
- I. Biswas and T. L. Gomez, Hecke transformation for orthogonal bundles and stability of Picard bundles, Comm. Anal. Geom. 18 (2010), no. 5, 857-890. https://doi.org/10.4310/CAG.2010.v18.n5.a1
- D. Cheong, I. Choe, and G. H. Hitching, Counting maximal Lagrangian subbundles over an algebraic curve, J. Geom. Phys. 167 (2021), Paper No. 104288, 20 pp. https://doi.org/10.1016/j.geomphys.2021.104288
- D. Cheong, I. Choe, and G. H. Hitching, Isotropic Quot schemes of orthogonal bundles over a curve, Internat. J. Math. 32 (2021), no. 8, Paper No. 2150047, 36 pp. https://doi.org/10.1142/S0129167X21500476
- I. Choe and G. H. Hitching, A stratification on the moduli spaces of symplectic and orthogonal bundles over a curve, Internat. J. Math. 25 (2014), no. 5, 1450047, 27 pp. https://doi.org/10.1142/S0129167X14500475
- I. Choe and G. H. Hitching, Maximal isotropic subbundles of orthogonal bundles of odd rank over a curve, Internat. J. Math. 26 (2015), no. 13, 1550106, 23 pp. https://doi.org/10.1142/S0129167X15501062
- J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des varietes de modules de fibres semi-stables sur les courbes algebriques, Invent. Math. 97 (1989), no. 1, 53-94. https://doi.org/10.1007/BF01850655
- W. Fulton and J. Harris, Representation theory, Graduate Texts in Mathematics, 129, Springer, New York, 1991. https://doi.org/10.1007/978-1-4612-0979-9
- T. Graber, J. Harris, and J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57-67. https://doi.org/10.1090/S0894-0347-02-00402-2
- P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, USA, 1994.
- A. Grothendieck, Sur la classification des fibres holomorphes sur la sphere de Riemann, Amer. J. Math. 79 (1957), 121-138. https://doi.org/10.2307/2372388
- A. Grothendieck, A General Theory of Fibre Spaces with Structure Sheaf, second ed. NSF report, Univ. of Kansas, 1958.
- R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer, New York, 1977.
- A. Hirschowitz, Problemes de Brill-Noether en rang superieur, C. R. Acad. Sci. Paris Ser. I Math. 307 (1988), no. 4, 153-156.
- G. H. Hitching, Subbundles of symplectic and orthogonal vector bundles over curves, Math. Nachr. 280 (2007), no. 13-14, 1510-1517. https://doi.org/10.1002/mana.200510561
- Y. I. Holla, Counting maximal subbundles via Gromov-Witten invariants, Math. Ann. 328 (2004), no. 1-2, 121-133. https://doi.org/10.1007/s00208-003-0475-0
- H. Lange and P. E. Newstead, Maximal subbundles and Gromov-Witten invariants, in A tribute to C. S. Seshadri (Chennai, 2002), 310-322, Trends Math, Birkhauser, Basel, 2003.
- A. Lanteri and R. Mallavibarrena, Projective bundles enveloping rational conic fibrations and osculation, J. Pure Appl. Algebra 224 (2020), no. 12, 106429, 21 pp. https://doi.org/10.1016/j.jpaa.2020.106429
- A. Lanteri, R. Mallavibarrena, and R. Piene, Inflectional loci of quadric fibrations, J. Algebra 441 (2015), 363-397. https://doi.org/10.1016/j.jalgebra.2015.06.023
- D. B. Mumford, Theta characteristics of an algebraic curve, Ann. Sci. Ecole Norm. Sup. (4) 4 (1971), 181-192. https://doi.org/10.24033/asens.1209
- W. M. Oxbury, Varieties of maximal line subbundles, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 1, 9-18. https://doi.org/10.1017/S0305004199004302