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LOW RANK ORTHOGONAL BUNDLES AND QUADRIC

FIBRATIONS

Insong Choe and George H. Hitching

Abstract. Let C be a curve and V → C an orthogonal vector bundle

of rank r. For r ≤ 6, the structure of V can be described using ten-
sor, symmetric and exterior products of bundles of lower rank, essentially

due to the existence of exceptional isomorphisms between Spin(r,C) and
other groups for these r. We analyze these structures in detail, and in

particular use them to describe moduli spaces of orthogonal bundles. Fur-

thermore, the locus of isotropic vectors in V defines a quadric subfibration
QV ⊂ PV . Using familiar results on quadrics of low dimension, we exhibit

isomorphisms between isotropic Quot schemes of V and certain ordinary

Quot schemes of line subbundles. In particular, for r ≤ 6 this gives a
method for enumerating the isotropic subbundles of maximal degree of a

general V , when there are finitely many.

1. Introduction

Let C be a complex projective smooth curve of genus g ≥ 2, and L → C
a line bundle. A vector bundle V → C is said to be L-valued orthogonal if
there is a nondegenerate symmetric bilinear form σ : V ⊗2 → L. Like sym-
plectic bundles (defined similarly, but with the form being skew-symmetric),
orthogonal bundles are interesting examples of decorated vector bundles. More-
over, they are associated bundles of principal G-bundles for G an orthogonal
group SO(r,C), O(r,C) or GO(r,C), and provide useful tools and intuition for
questions regarding these principal bundles and their moduli. See for example
[2, 4, 6–8,26] and many other works.

Orthogonal bundles and their moduli enjoy remarkable geometric proper-
ties. One reason for this is that the group SO(r,C) is not simply connected
as SL(r,C) and Sp(2n,C) are, but has fundamental group Z2 and universal
covering given by the spin group Spin(r,C). The point of departure for the
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present work is the fact that for 3 ≤ r ≤ 6, there are exceptional isomorphisms
between Spin(r,C) and other familiar groups:

r 3 4 5 6
Spin(r,C) SL(2,C) SL(2,C)× SL(2,C) Sp(4,C) SL(4,C)

Moreover, in each case there are interesting geometric interpretations for the
map Spin(r,C) → SO(r,C); see for example [10, Lectures 18–19]. Taking a cue
from the existence of these isomorphisms, we describe the structures of orthog-
onal bundles of rank r ≤ 6 using sum and tensor operations on bundles of lower
rank. This extends the classification in [22, pp. 185–187] of SO(r,C)-bundles
for r ≤ 4. Of particular interest is the fact that topologically, orthogonal bun-
dles of rank r with trivial determinant are distinguished by another topological
invariant, the second Stiefel–Whitney class w2(V ) ∈ H2(C,Z2) ∼= Z2. This was
characterized in [27] in terms of theta characteristics of C, and we discuss it fur-
ther in §2.3. Here is an overview of the structure theorems for the case L = OC

and det(V ) ∼= OC and w2(V ) = 0. (The statements for the other cases are
given at the relevant points in the paper; compare also with [22, pp. 185–187].)

Rank Structure
2 N ⊕N−1 : N ∈ Pic(C)
3 Sym2E ⊗ (detE)−1 : E of rank two
4 E1 ⊗ E2 : E1, E2 of rank two, detE2

∼= (detE1)
−1

5 Ker(∧2W1 → M) : M a square root of OC , and
W1 a rank four M -valued symplectic bundle

6 ∧2W : W of rank four and trivial determinant

These identifications imply in particular the existence of natural maps between
certain moduli spaces of bundles over C, which are described in the course of
the paper.

An important point is that when r = 2n is even, our proofs rely on the
existence of a rank n isotropic subbundle in V . In [6, §2], it was shown that
this is equivalent to the condition detV ∼= Ln (in general, the isomorphism

V
∼−→ V ∗⊗L only gives (detV )2 ∼= L2n). Moreover, in [7] and [8] it was shown

that when L = OC = detV , the invariant w2(V ) coincides with the parity
of the degrees of the rank n isotropic subbundles of V . In Lemma 3.2 and
Theorem 2.3 we offer more elementary proofs of these results.

Turning our attention to the “quadric fibrations” in the title: The locus of
isotropic lines in fibers of an orthogonal bundle V is a subfibration QV ⊂ PV
in smooth quadric hypersurfaces, giving PV the structure of an “enveloping
bundle” (see §2.5). For r ≤ 6, these quadrics are very well understood; see for
example [12]:

r 2 3 4 5 6
Quadric Two smooth points Conic P1 P1 × P1 LG(2, 4) Gr(2, 4)
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Here LG(2, 4) ⊂ Gr(2, 4) is the Lagrangian Grassmannian of two-dimensional
subspaces of C4 which are isotropic with respect to a fixed nondegenerate skew-
symmetric bilinear form. We use well-known properties of these quadrics to
analyze the structures of orthogonal bundles, and in particular their isotropic
subbundles. For 3 ≤ r ≤ 6, it turns out that the isotropic Quot scheme
IQ◦

m,e(V ), which parameterizes isotropic subbundles of rank m and degree e in
V , is isomorphic to a union of Quot schemes of subbundles of certain bundles
of lower rank. This allows us in particular to enumerate the maximal isotropic
subbundles of a general orthogonal bundle of rank r ≤ 6, when the number is
finite. This gives an analog for low rank orthogonal bundles of the enumeration
results in [18] for maximal degree subbundles of a general vector bundle, and in
[5] for maximal degree Lagrangian subbundles of a general symplectic bundle.

Some results in the paper are proven in or would follow easily from [6], [7]
and [8]. However, our policy is, whenever possible, to give arguments which are
elementary and/or use the rich and familiar geometry of the low rank situation.

The paper is organized as follows. We begin by recalling background material
on orthogonal bundles and their moduli, isotropic subbundles and isotropic
Quot schemes, and quadric subfibrations of projective bundles. Then we give
a detailed treatment of the rank two case. This is relatively well-known and
straightforward, but provides a paradigm for the other cases; moreover, the
rank two case has some useful corollaries for higher rank bundles. We then
turn to the higher rank cases. It emerges that the results in rank three and five
follow naturally from special cases of rank four and six, respectively. Therefore,
we treat the latter first in each case.

For the present, as mentioned above, we have restricted ourselves in the even
rank cases to orthogonal bundles which admit isotropic subbundles of half rank.
The structure of bundles not possessing any such subbundle is of interest, and
amenable to study by similar methods. This topic will be studied in a future
project.

Acknowledgements. We are grateful to Daewoong Cheong for stimulating
conversations, and for sharing valuable knowledge of enumerative geometry.
We thank Han-Bom Moon for a useful suggestion on the morphisms between
moduli spaces. The second author thanks Raquel Mallavibarrena for interesting
communication about enveloping bundles.

2. Preliminaries

2.1. Orthogonal bundles and isotropic subbundles

Here we recall background material on orthogonal bundles. For more infor-
mation, we refer to [2, 6, 22,24].

Let C be a complex projective smooth curve, and L → C a line bundle. A
vector bundle V → C of rank r is said to be L-valued orthogonal if there is a
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nondegenerate symmetric bilinear form σ : V ⊗2 → L; equivalently, if there is a
symmetric isomorphism V

∼−→ V ∗ ⊗ L.
In particular, for such a V we have (detV )2 ∼= Lr. It follows that if r = 2n+1

is odd,

(2.1) deg(L) is even, and detV ∼= M2n+1 for a uniquely determined M

such that M2 ∼= L.

On the other hand, if r = 2n is even, then

(2.2) detV ∼= Ln ⊗ η for some η satisfying η2 ∼= OC .

The question of which η arise in (2.2) is linked to the existence of certain
isotropic subbundles, which we now discuss.

Let V be L-valued orthogonal of rank r. For any subbundle E ⊂ V , the
isomorphism V

∼−→ V ∗ ⊗ L induces a sequence 0 → E⊥ → V → E∗ ⊗ L → 0,
where

E⊥ := {v ∈ V : σ(v ⊗ e) = 0 for all e ∈ E}
is the orthogonal complement of E with respect to σ. A subbundle E ⊂ V is
isotropic if E ⊆ E⊥; equivalently, if σ(E ⊗ E) = 0.

Suppose rk (V ) = 2n and V contains an isotropic subbundle E of rank n.
Then E = E⊥ and V is an extension 0 → E → V → E∗⊗L → 0. In particular,

(2.3) if V admits a rank n isotropic subbundle, then detV ∼= Ln;

that is, η = OC in (2.2). In fact, by [6, Lemma 2.5] the converse of (2.3) also
holds; in Proposition 3.2, we shall offer an elementary proof of this fact.

Moreover, in general, not every extension 0 → E → V → E∗ ⊗ L → 0
arises from an orthogonal structure. We shall use the following characterization
[17, Criterion 2.1].

Criterion 2.1. Let 0 → E → V → E∗ ⊗ L → 0 be an extension of vector
bundles, with class δ(V ) ∈ H1(C,E⊗E⊗L−1). Then V admits an orthogonal
structure with respect to which E is isotropic if and only if, up to the action of
Aut (E)×Aut (E∗⊗L), the extension class δ(V ) belongs to H1(C,∧2E⊗L−1).

2.2. Moduli of orthogonal bundles

For any line bundle N , let SUC(r,N) be the moduli space of S-equivalence
classes of semistable vector bundles of rank r and determinant N over C. As
this is noncanonically isomorphic to the moduli space of semistable principal
SL(2,C)-bundles over C, by [25, Theorem 5.9] it is an irreducible projective
variety of dimension (r2 − 1)(g − 1). We consider the following closed subloci
of SUC(r,OC) and SUC(r,OC(nx)) for a fixed x ∈ C.

• MOC(2n,OC), the moduli space of semistable OC-valued orthogonal
bundles of rank 2n and trivial determinant.

• MOC(2n,OC(x)), the moduli space of semistable OC(x)-valued or-
thogonal bundles of rank 2n and determinant OC(nx).
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• MOC(2n+ 1,OC), the moduli space of semistable OC-valued orthog-
onal bundles of rank 2n+ 1 and trivial determinant.

We shall use the notation SUC(r,N)st and MOC(r, L)st when we wish to re-
strict to the stable loci. We write F ∼ F ′ to indicate that F and F ′ are
S-equivalent semistable vector bundles.

Let us explain why we consider only these three kinds of moduli space.
Firstly, when r = 2n + 1, any L-valued orthogonal bundle is a twist by a line
bundle of one which is OC-valued with trivial determinant. When r = 2n, any
L-valued orthogonal bundle is a twist by a line bundle of either an OC-valued
or an OC(x)-valued orthogonal bundle. Furthermore, we shall consider only
L-valued orthogonal bundles which admit rank n isotropic subbundles. Hence
in view of (2.3), we get the restriction on the determinant as above for r = 2n.

The following seems to be well known, but we include a proof for complete-
ness.

Lemma 2.2. Every component of the moduli spaces above is of dimension
1
2r(r − 1)(g − 1), where r is the rank.

Proof. Recall that the conformal orthogonal group GO(r,C) is the image in
GL(r,C) of the multiplication map O(r,C) × C∗ → GL(r,C). As explained
in [4, §2], the moduli space of rank 2n vector bundles admitting an L-valued
symmetric form for some L of degree ℓ is the image of certain components
of the moduli space of semistable GO(2n,C)-bundles by the forgetful map to
U
(
r, rℓ

2

)
. Furthermore, by [1, Theorem 8.5 and Remark 8.6], this map is finite.

Thus by [25, Theorem 5.9], this image has dimension

(g − 1) · dimGO(r,C) + dimZ(GO(r,C)) =
(
1

2
r(r − 1) + 1

)
(g − 1) + 1.

Fixing ℓ and L, we obtain a locus of codimension g; that is, dimension 1
2r(r −

1)(g − 1) as desired. □

2.3. The second Stiefel–Whitney class

As will be discussed later, the moduli space MOC(r,OC(x)) is irreducible.
However, MOC(r,OC) is in general reducible, due to the presence of another
discrete invariant for orthogonal bundles which we shall now discuss.

Firstly, we dispose of a special case. The group SO(2,C) is isomorphic to
C∗ via the map

z 7→

(
z+1/z

2
−z+1/z

2
√
−1

z−1/z

2
√
−1

z+1/z
2

)
.

Hence it has infinite cyclic fundamental group, unlike SO(r,C) for r ≥ 3.
Therefore, during this section we shall assume that r ≥ 3.

For r ≥ 3, let 1 → Z2 → Spin(r,C) → SO(r,C) → 1 be the exact sequence
associated to the universal covering of SO(r,C); see for example [10, Lecture
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20]. By for example [14, Chapter 5], this gives rise to a sequence of nonabelian
cohomology sets

· · · → H1(C,Z2) → H1(C,Spin(r,C)) → H1(C,SO(r,C)) → H2(C,Z2).

Choosing a set of transition functions for V defines an element ofH1(C, SO(r,C)).
Then w2(V ) is the image of this element in H2(C,Z2). By [14, Proposition
5.7.2], the class w2(V ) is trivial if and only if V is obtained from a Spin(r,C)-
bundle by the extension of structure group given by Spin(r,C) → SO(r,C). For
i ∈ Z2, we denote by MOi

C(r,OC) the component of MOC(r,OC) consisting
of bundles with w2(V ) = i ∈ {0, 1}.

The class w2(V ) has several properties. Firstly, by [27, Theorem 2], for every
theta characteristic κ on C we have

(2.4) w2(V ) ≡ h0(V ⊗ κ) + r · h0(κ) mod 2.

Furthermore, it is shown in [7] and [8] that w2(V ) coincides with the parity

of the degree of any rank n isotropic subbundle of V , where n =
⌊
rk (V )

2

⌋
. We

now offer a more elementary proof of this fact.

Theorem 2.3. Let V be an OC-valued orthogonal bundle of rank 2n or 2n+
1 and trivial determinant. If F ⊂ V is a rank n isotropic subbundle, then
w2(V ) ≡ deg(F ) mod 2. In particular, all rank n isotropic subbundles of V
have degree of the same parity.

Caution 2.4. Note that we have not proven that V has any such subbundle
F . This will be shown in Proposition 3.2.

Proof. Suppose firstly that r = 2n. By hypothesis and using Criterion 2.1,
there is an exact sequence 0 → F → V → F ∗ → 0 such that the cohomology
class [V ] belongs to H1(C,∧2F ). For any theta characteristic κ, this yields a
cohomology sequence

(2.5) 0 → H0(C,F ⊗ κ) → H0(C, V ⊗ κ) → H0(C,F ∗ ⊗ κ)
∪[V ]−−−→ H1(C,F ⊗ κ) → · · · .

Now by Serre duality, there is an identificationH1(C,F⊗κ)
∼−→ H0(C,F ∗⊗κ)∗.

We claim that the map ∪[V ] is antisymmetric. To see this: It is well known that
the cup product map ∪ : H1(C,F ⊗F ) → Hom

(
H0(C,F ∗ ⊗ κ), H1(C,F ⊗ κ)

)
is dual to the Petri map

µ : H0(C,F ∗ ⊗ κ)⊗2 → H0(C,F ∗ ⊗ F ∗ ⊗KC).

Thus we must show that

(2.6)
〈
[V ], µ

(
Sym2H0(C,F ∗ ⊗ κ)

)〉
= 0,

the pairing being defined by Serre duality. But since

µ
(
Sym2H0(C,F ∗ ⊗ κ)

)
⊆ H0(C, Sym2F ∗ ⊗KC)

while [V ] ∈ H1(C,∧2F ) ∼= H0(C,∧2F ∗ ⊗KC)
∗, we obtain (2.6).
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By the above claim, the map ∪[V ] in (2.5) has even rank. We write

h := h0(C,F ∗ ⊗ κ) = h1(C,F ⊗ κ).

Moreover, χ(F ⊗ κ) = deg(F ), so h0(C,F ⊗ κ) = deg(F ) + h. By exactness of
(2.5), then,

h0(C, V ⊗κ) = h0(C,F ⊗κ)+dimKer(∪[V ]) = (deg(F ) + h)+(h− rk (∪[V ])) .

Since rk (∪[V ]) is even, h0(C, V ⊗ κ) ≡ deg(F ) mod 2. The statement now
follows from (2.4), since r = 2n.

Suppose now that rk (V ) = 2n+1. We use a technique applied frequently in
[8] and [6, §8], which will appear several times in this paper. The orthogonal
direct sum V ⊥ OC is OC-valued orthogonal of rank 2n+ 2 and trivial deter-
minant. Let E be any rank n isotropic subbundle of V . Using for example a
local trivialization, we can complete E to a rank n+1 isotropic subbundle E of
V in two distinct ways, each one an extension 0 → E → E → OC → 0. Thus
deg(E) = deg(E). It follows by the even rank case above that

all rank n isotropic subbundles of V have parity equal to w2(V ⊥ OC).

On the other hand, an easy computation with (2.4) shows that w2(V ) =
w2(V ⊥ OC). The statement for r = 2n+ 1 now follows. □

2.4. Isotropic Quot schemes

For any bundle W , we have the Quot scheme

Quotrk (W )−m,deg(W )−d(W )

parameterizing coherent quotients of W of rank rk (W )−m and degree deg(W )
−d; equivalently, locally free subsheaves of W of rank m and degree d. We
depart from convention and denote this by Quotm,d(W ). We denote the open
subset of saturated subsheaves by Quot◦m,d(W ).

If V is an orthogonal bundle of rank 2n or 2n + 1, then for 1 ≤ m ≤ n we
consider the closed sublocus

IQ◦
m,e(V ) :=

{
[j : E ↪→ V ] ∈ Quot◦m,e(V ) : j(E) isotropic of rank m and degree e

}
.

Let us say a little more about isotropic subbundles of maximal rank n. By
[6, Proposition 3.3], the expected dimension of IQ◦

n,e(V ) is

(2.7)

{
−(n− 1)e− n(n−1)

2 (g − 1− ℓ) if r = 2n;

−n
(
e+ ℓ

2

)
− n(n+1)

2 (g − 1− ℓ) if r = 2n+ 1.

Note that when r = 2n and ℓ is even, IQ◦
n,e(V ) is in general disconnected,

by [6, Theorem 1.4(a)]. In Corollary 4.7 and Corollary 6.10, we shall see this
concretely for r = 4 and r = 6, respectively.
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Zero dimensional Quot schemes. Of particular interest for us will be the ques-
tion of enumerating the points of IQ◦

n,e(V ) for a general V when this scheme
is finite. This corresponds to the maximal value of e for which IQ◦

n,e(V ) is
nonempty. The analogous question for maximal subbundles of vector bundles
was answered in [18, Theorem 4.2], and for maximal Lagrangian subbundles of
symplectic bundles in [5]. We quote a special case [18, Corollary 4.3] which we
shall use later (see also [23, Lemma 2.2]).

Theorem 2.5. Let W be a general stable bundle of rank r. If

deg(W ) ≡ 1− g mod r,

then W has rg maximal line subbundles of degree 1
r (deg(W )− (r − 1)(g − 1)).

Using (2.7), we now decide which IQ◦
n,e(V ) have expected dimension zero.

The following can be viewed as a special case of [6, Theorems 1.4 and 1.5].

Lemma 2.6. Write ℓ := deg(L). We assume that ℓ ∈ {0, r
2} when r is even,

and ℓ = 0 when r is odd. Assume that V is L-valued orthogonal of rank r and
general in moduli. In the range 3 ≤ r ≤ 6, the scheme IQ◦

n,e(V ) has expected
dimension zero if the following conditions hold:

r = 3 e = −g + 1
r = 4 e = ℓ− g + 1
r = 5 g is odd and e = − 3

2 (g − 1)
r = 6 ℓ− g is odd and e = 3

2 (ℓ− g + 1)

In these cases, each component (that is, point) of IQ◦
n,e(V ) corresponds to

an isotropic subbundle of V of rank ⌊ r
2⌋ and degree e. Later we shall give

enumerative results on the number of such isotropic subbundles of rank m, for
1 ≤ m ≤ n.

2.5. Quadric fibrations

Finally, we discuss a certain quadric subfibrationQV ⊂ PV for an orthogonal
bundle V . This is closely related to the notion of an enveloping bundle as
studied in [20] and [21], to which we refer the reader for more information.
Note however that our situation is slightly different, as we begin with the
vector bundle V instead of the quadric fibration QV ; and we do not consider
PV or QV in a projective embedding, but only QV relatively embedded in PV
over C.

Let V → C be a vector bundle of rank r ≥ 2, and π : PV → C the associ-
ated projective bundle. Let σ be a nonzero element of H0(C, Sym2V ∗ ⊗ L) ∼=
H0(PV,OPV (2) ⊗ π∗L). We denote by QV the divisor (σ) ⊂ PV . It is a
quadric fibration over C. If we further assume that σ|p defines a symmetric
isomorphism V |p → (V ∗ ⊗ L)|p for each fiber, then σ defines an L-valued or-
thogonal structure on V , and QV → C is a fibration in smooth quadrics. (This
was observed for r = 3 and C = P1 in [20, Remark 1, p. 9].) In this case,
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QV ⊂ PV parameterizes lines in fibers of V which are isotropic with respect to
the quadratic form σ.

A useful application of the above is:

Proposition 2.7. Let V be an L-valued orthogonal bundle of rank r ≥ 3. Then
V admits an isotropic line subbundle.

Proof. The fibers of QV are quadric hypersurfaces in Pr−1, so are rationally
connected for r ≥ 3. Thus by [11], there is a section C → QV

∼= OG(1, V ),
defining an isotropic line subbundle of V . □

3. Rank two

We now consider orthogonal bundles of rank two. These results are straight-
forward and can be obtained without mentioning quadric fibrations, but we
do this as practice for the higher rank cases. Firstly, we give a variation on
[6, Proposition 2.10].

Theorem 3.1. Let V be an L-valued orthogonal bundle of rank two and de-
terminant L. Then V ∼= N ⊕ N−1L for some line bundle N . Moreover, V
has precisely two isotropic subbundles, which are isomorphic to N and N−1L
respectively.

Proof. Let N be a line subbundle of maximal degree in V . Then the orthogonal
form on V induces the surjective bundle map V → N−1L whose kernel is N⊥.
Thus we have N⊥ ∼= N .

If N is isotropic, Criterion 2.1 shows that V is isomorphic to an extension
0 → N → V → N−1L → 0 determined by a class in H1(C,L−1 ⊗ ∧2N). As
∧2N = 0, we have V ∼= N ⊕N−1L.

If N is not isotropic, then N ⊕ N⊥ is a rank two subsheaf of V . Thus in
fact N ⊕ N is a subsheaf of V . As deg(N) was assumed to be maximal, this
does not drop rank anywhere, so V ∼= N ⊕ N . Since detV ∼= L, we have
N ∼= N−1L. In particular, E ∼= N ⊗ O⊕2

C , where N is an orthogonal line
subbundle. Hence by choosing a copy of N ⊂ V whose fiber is isotropic, we
can also write E ∼= N ⊕ N−1L, with respect to which the summands are the
isotropic subbundles. □

We now investigate the structure of PV as an enveloping bundle, where V
is L-valued orthogonal of rank two and determinant L. Here the locus QV of
isotropic lines in PV is a fibration in smooth zero-dimensional quadrics; that
is, pairs of points. By Theorem 3.1, we have

QV = PN ⊔ P(N−1L) ∼= C ⊔ C.

An isotropic line subbundle corresponds to a section of PV belonging to C ⊔C
at each point; that is, one of the copies of C. Thus IQ◦

1,e(V ) is empty unless

e = deg(N) or e = deg(N−1L). (If e = deg(N) = ℓ
2 , then it consists of two

points.)
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As applications of our results so far, and to make the present paper more
self-contained, we offer alternative proofs of some results in [6] and [8] which
we shall require later.

Proposition 3.2. Let V be an L-valued orthogonal bundle of rank 2n. Then
V admits an isotropic subbundle of rank n if and only if detV ∼= Ln.

Proof. (See also [6, Lemma 2.5].) The “only if” implication is (2.3). For “if”,
we proceed by induction on n. The case n = 1 follows from Theorem 3.1.
Suppose n ≥ 2. By Proposition 2.7, we can find an isotropic line subbundle
H ⊂ V . Then H⊥/H is L-valued orthogonal of rank 2n − 2. From the exact
sequence 0 → H⊥ → V → H−1L → 0, we deduce that

det
(
H⊥/H

) ∼= det(H⊥)⊗H−1

∼= (detV )⊗H ⊗ L−1 ⊗H−1

∼= (detV )⊗ L−1

∼= Ln−1.

By induction, H⊥/H has an isotropic subbundle E of rank n− 1. The inverse
image of Ē in H⊥ ⊂ V is a rank n isotropic subbundle of V . □

We now give an analog of Theorem 2.3 for the odd degree case (compare
with [6, Theorem 1.4(b)]).

Lemma 3.3. Suppose deg(L) is odd, and let V be L-valued orthogonal of rank
2n. Suppose V satisfies the equivalent conditions of Proposition 3.2. Then V
has isotropic rank n subbundles both of even degree and of odd degree.

Proof. Let E ⊂ V be a rank n isotropic subbundle. Let H ⊂ E be any
rank n− 1 subbundle, which is necessarily isotropic. Then H⊥/H is L-valued
orthogonal of rank two and determinant L, and admits E/H as an isotropic
line subbundle. By Theorem 3.1, in fact

H⊥

H
∼=

E

H
⊕
((

E

H

)∗

⊗ L

)
.

Then (E/H)∗ ⊗ L is of the form F/H for a rank n isotropic subbundle F ⊂
H⊥ ⊂ V , and

deg(F ) = −(deg(E)− degH) + deg(L) + deg(H) ≡ deg(E) + deg(L) mod 2.

As deg(L) is assumed to be odd, deg(F ) and deg(E) have opposite parity. □

4. Rank four

We now turn our attention to orthogonal bundles of rank four, as the rank
three case turns out to follow from a special case of rank four.
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4.1. Rank four orthogonal bundles with rank two isotropic subbun-
dles

As noted in [22, p. 186], given two bundles E1 and E2 of rank two, the
pairing

(4.1) (E1 ⊗ E2)⊗ (E1 ⊗ E2) → ∧2E1 ⊗ ∧2E2 =: L

defines an L-valued orthogonal structure on E1 ⊗ E2. Furthermore, for any
line subbundles N1 ⊂ E1 and N2 ⊂ E2, the subbundles N1 ⊗ E2 and E1 ⊗N2

are isotropic of rank two. We shall now see that this induces finite surjective
morphisms of moduli spaces.

Theorem 4.1.

(a) The association (F1, F2) 7→ F1⊗F2 defines finite surjective morphisms

Θ0
4 : SUC(2,OC)× SUC(2,OC) → MO0

C(4,OC)

and

Θ1
4 : SUC(2,OC(x))× SUC(2,OC(−x)) → MO1

C(4,OC).

In particular, MOC(4,OC) has two irreducible components.
(b) For L ∼= OC(x), the association (F1, F2) 7→ F1 ⊗ F2 defines a finite

surjective morphism

Φ4 : SUC(2,OC)× SUC(2,OC(x)) → MOC(4,OC(x)).

In particular, MOC(4,OC(x)) is irreducible.

Proof. Let us firstly define the morphism Θ0
4. As C has characteristic zero,

F1⊗F2 is semistable if F1 and F2 are so. Therefore, passing to a suitable étale
cover, we can define Θ0

4 on the open subset SUC(2,OC)st×SUC(2,OC)st using
a Poincaré bundle. Note that by Theorem 2.3, the images of Θ0

4 and Θ1
4 are

contained in MO0
C(4,OC) and MO1

C(4,OC), respectively.
Now it is straightforward to check that if F1 ∼ F ′

1 and F2 ∼ F ′
2, then

F1 ⊗ F2 ∼ F ′
1 ⊗ F ′

2. Hence, as any semistable bundle is a limit of stable ones,
it follows that Θ0

4 has a continuous extension to SUC(2,OC) × SUC(2,OC).
Now since Θ0

4 is algebraic on SUC(2,OC)st × SUC(2,OC)st, it is bounded on
a neighborhood of any point. Therefore, by the Riemann extension theorem,
the continuous extension to SUC(2,OC)×SUC(2,OC) given by the association
(F1, F2) 7→ F1 ⊗ F2 is a morphism.

Now by [9, Théorème B(b)], the moduli space SUC(2,OC) has Picard
number 1. Let N be any very ample line bundle on MO0

C(4,OC). Then(
Θ0

4

)∗ N ∼= La ⊠ Lb for some integers a, b, where L is the ample generator of

Pic (SUC(2,OC)). Since Θ0
4 is symmetric, we have a = b > 0. Therefore, Θ0

4

must be a finite morphism. As SUC(2,OC) × SUC(2,OC) and MO0
C(4,OC)

are projective varieties of the same dimension, Θ0
4 is surjective.

Similar arguments show that Θ1
4 and Φ4 are finite surjective morphisms.

(Note that since SUC(2,OC(±x)) is a fine moduli space, we can define Θ1
4
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without using the Riemann extension theorem.) The irreducibility statements
follow from the fact that SUC(2, L) is irreducible. □

It is natural to ask if an arbitrary (possibly unstable) L-valued orthogonal
bundle of rank four which admits an isotropic subbbundle of rank two can be
obtained in this way. The answer is Yes, and the proof of the following theorem
shows how to find the expression(s).

Theorem 4.2. Let V be a rank four L-valued orthogonal bundle. Then V
admits a rank two isotropic subbundle if and only if V is isomorphic to E1⊗E2

for some rank two bundle E2 with detE2
∼= detE∗

1 ⊗ L.

Proof. One implication follows from (4.1) and the discussion after it. Con-
versely, suppose E1 ⊂ V is a rank two isotropic subbundle. Then Criterion
2.1 shows that V is isomorphic to an extension 0 → E1 → V → E∗

1 ⊗ L → 0
defined by a class

δ ∈ H1(C,∧2E1 ⊗ L∗) ⊂ H1(C,E1 ⊗ E1 ⊗ L∗).

Now δ also defines an extension of line bundles 0 → OC → E2 → detE∗
1 ⊗L →

0. Tensoring by E1, we obtain an extension 0 → E1 → E1 ⊗ E2 → E1 ⊗
detE∗

1 ⊗ L → 0 of class

IdE1 ⊗ δ ∈ H1(C, (OC · IdE1)⊗ detE1 ⊗L∗) ⊂ H1(C,End(E1)⊗ detE1 ⊗L∗).

Now since E1 has rank two, there is an isomorphism Hom(E1, E1 ⊗ detE1)
∼−→

E1 ⊗ E1 inducing an isomorphism of split exact sequences:

0 // (OC · IdE1
)⊗ detE1

//

≀
��

End(E1)⊗ detE1
//

≀
��

End0(E1)⊗ detE1
//

≀
��

0

0 // ∧2E1
// E1 ⊗ E1

// Sym2E1
// 0

Under the induced identification H1(C,∧2E1 ⊗ L∗)
∼−→ H1(C,OC · IdE1

⊗
detE1 ⊗L∗), the extension class IdE1

⊗ δ corresponds simply to δ. This shows
that V and E1⊗E2 are isomorphic vector bundles. Also the natural orthogonal
structure of V induced from the extension δ coincides with that of E1 ⊗E2 in
view of Criterion 2.1. □

4.2. Quadric fibration and isotropic subbundles

Let V = E1⊗E2 be an L-valued orthogonal bundle as above. A computation
using (4.1) shows that the isotropic vectors in E1 ⊗E2 are exactly those of the
form e1 ⊗ e2 for ei ∈ Ei. Therefore:

Proposition 4.3. The quadric subfibration QV ⊂ PV parameterizing isotropic
lines is the image of the relative Veronese embedding PE1×CPE2 ↪→ P(E1⊗E2).

In particular, PV is an enveloping bundle for PE1 ×C PE2. Moreover, we
observe:
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Remark 4.4.

(a) There are natural projections ρ1 : QV → PE1 and ρ2 : QV → PE2,
which are morphisms over C.

(b) Via the identification E1 ⊗ E2
∼−→ Hom(E∗

1 , E2), the locus QV is the
projectivization of the set of maps of rank one.

(c) The two-dimensional isotropic subspaces of a fiber E1⊗E2|p are exactly
those of the form Λ1 ⊗ E2|p and E1|p ⊗ Λ2, where Λi is a line in Ei|p.

We now use the enveloping bundle structure to study isotropic subbundles
of V .

Proposition 4.5. Suppose V = E1 ⊗ E2 as above. Let F ⊂ V be a rank two
isotropic subbundle. Then F is either of the form E1 ⊗ N2 for a line bundle
N2 ⊂ E2, or N1 ⊗ E2 for a line bundle N1 ⊂ E1. In each case, Ni is uniquely
determined as a subbundle of Ei.

Proof. The inclusion F ↪→ V induces a map PF ↪→ PV of ruled varieties over
C. By isotropy, PF is contained in QV , so we have the composed maps PF ↪→
QV

ρi−→ PEi. Clearly at least one of these is dominant, and hence surjective,
being a morphism of projective varieties. Moreover, since F is isotropic, by
Remark 4.4(c), for all p ∈ C the fiber F |p is of the form Λ1⊗E2|p or E1|p⊗Λ2

for some line Λi ⊂ Ei|p. Thus PF cannot project surjectively to both PE1 and
PE2, so exactly one of the projections PF → PEi is surjective.

After reordering if necessary, we may assume that PF ∼= PE1. As PF is not
dominant over PE2, for general p ∈ C the fiber PF |p ⊂ QV |p is the line

PE1|p × {µ(p)} ⊂ PE1|p × PE2|p
for some µ(p) ∈ PE2|p. We thus obtain a section µ : C → PE2, defining a line
subbundle N2 ⊂ E2, and F = E1 ⊗N2. □

Remark 4.6. If PE1
∼= PE2, then E1⊗E2 is a twist of EndE1 = OC⊕End0 E1,

and in particular is strictly semistable. Thus if V = E1 ⊗E2 is a stable vector
bundle, then PE1 ̸∼= PE2. The situation where PE1

∼= PE2 will arise in the
next section in the context of rank three orthogonal bundles.

In what follows, we follow the convention that a Quot scheme Quotr,d(W )
is empty if d is not an integer.

Corollary 4.7. Let V = E1 ⊗ E2 be a rank four L-valued orthogonal bundle
as above. Write di := deg(Ei). For each e, there is an isomorphism

Quot◦1, 12 (e−d2)
(E1) ⊔Quot◦1, 12 (e−d1)

(E2)
∼−→ IQ◦

2,e(V ),

via the map {
N 7→ N ⊗ E2 if N ⊂ E1,

N 7→ E1 ⊗N if N ⊂ E2.
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Remark 4.8. Notice that d1 + d2 = ℓ. Then a Riemann–Roch computation
shows that Quot◦1, 12 (e−d2)

(E1) and Quot◦1, 12 (e−d1)
(E2) have expected dimension

ℓ− e− (g − 1). This coincides with the expected dimension of IQ◦
2,e(V ) given

in (2.7), agreeing with Corollary 4.7.

Remark 4.9. Note that the ruled surface PE1 arises both as the projectivization
of the isotropic subbundle E1 and as a component of the isotropic Grassman-
nian bundle OG(V ) ⊂ P(∧2V ); that parameterizing isotropic planes of the
form (N ⊗ E2)|p for p ∈ C.

As shown by Theorem 2.3, if L = OC , then all rank two isotropic subbundles
have degree of the same parity (which coincides with the invariant w2(V ), by
Theorem 2.3). The above results make this particularly visible for bundles of
rank four:

Corollary 4.10. Let V = E1 ⊗ E2, where detE1 ⊗ detE2
∼= OC . Then E1

and E2 have degrees of the same parity, which is also the parity of any rank
two isotropic subbundle of E1 ⊗ E2.

Proof. We have deg(E1) ≡ deg(E2) mod 2 since detE1 ⊗ detE2
∼= OC . By

Proposition 4.5, any rank two isotropic subbundle F ⊂ V is isomorphic to
Ei ⊗N for some line subbundle N and for some i ∈ {1, 2}. Thus

deg(F ) = deg(Ei ⊗N) = deg(Ei) + 2 degN ≡ deg(Ei) mod 2. □

We turn now to isotropic line subbundles. By Proposition 4.3, an isotropic
line subbundle N of V = E1⊗E2 corresponds to a section of QV = PE1×CPE2.
Hence N is of the form N1⊗N2, where Ni is a line subbundle of Ei for i = 1, 2.
Therefore, we obtain at once:

Theorem 4.11. Let V = E1 ⊗ E2 be as above. Then (N1, N2) 7→ N1 ⊗ N2

defines an isomorphism⋃
d1+d2=d

Quot◦1,d1
(E1)×Quot◦1,d2

(E2)
∼−→ IQ◦

1,d(E1 ⊗ E2).

4.3. Enumeration of maximal degree isotropic subbundles

Firstly, we discuss the number of isotropic subbundles of rank two with
maximal degree. In particular, we obtain another proof of Lemma 2.6 for
r = 4.

Theorem 4.12. Let V be a stable rank four orthogonal bundle which is general
in its component of moduli.

(a) Suppose V ∈ MOC(4,OC)st. Then the number of isotropic subbundles
of rank two of maximal degree is given as follows.

MO0
C(4,OC) MO1

C(4,OC)
g even ∞ of degree − g 2 · 2g of degree 1− g
g odd 2 · 2g of degree 1− g ∞ of degree − g
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(b) Suppose V ∈ MOC(4,OC(x))st. Then V admits 2g isotropic subbun-
dles of rank two and degree 2− g.

(c) Suppose g ≥ 3 is odd. Then V has 4g maximal isotropic line subbundles
of degree 1− g.

Proof. (a) A computation using Corollary 4.7 shows that for each value of
w2(V ), the scheme of maximal rank two isotropic subbundles of V = E1 ⊗ E2

is canonically identified with the union of the Quot schemes of maximal line
subbundles of E1 and E2. By Theorem 4.1, we may assume that E1 and E2 are
general in moduli. The statement now follows from Theorem 2.5. The proof of
(b) is similar.

As for (c): It follows from Theorem 4.11 that the degree of an isotropic line
subbundle N1 ⊗N2 ⊂ E1 ⊗E2 is maximal among the isotropic line subbundles
if and only if Ni is a maximal line subbundle of Ei for i = 1, 2. By Theorem 2.5,
if g is odd, then a general Ei ∈ SUC(2,OC) has 2

g maximal line subbundles of
degree − 1

2 (g − 1). Statement (c) follows. □

5. Rank three

Suppose V is an L-valued orthogonal bundle of rank three. By (2.1), the
line bundle L has even degree and detV ∼= M3 for some M satisfying M2 ∼= L.
We now analyse the structure of orthogonal bundles of rank three, expanding
upon [22, p. 185] and [8, Lemma 4.1].

5.1. Rank three orthogonal bundles

As noted in the case L = OC in [22, §2], for any rank two bundle E, the
bundle M ⊗ (detE)−1 ⊗ Sym2E has an L-valued quadratic form induced by

(5.1) (e1 · e2)⊗ (f1 · f2) 7→ 2 (e1 ∧ f1 ⊗ e2 ∧ f2 + e2 ∧ f1 ⊗ e1 ∧ f2) .

We shall see that this induces finite surjective morphisms of moduli spaces.
Noting that any rank three orthogonal bundle is a twist of an OC-valued or-
thogonal bundle of determinant OC , we now set L = M = OC and describe
the moduli space MOC(3,OC) in more detail.

Theorem 5.1.

(a) The association E 7→ Sym2E defines a finite surjective morphism

Θ0
3 : SUC(2,OC) → MO0

C(3,OC).

(b) For any x ∈ C, the association E 7→ Sym2E⊗OC(−x) defines a finite
surjective morphism

Θ1
3 : SUC(2,OC(x)) → MO1

C(3,OC).

Proof. Let us firstly define the morphism Θ0
3. As C has characteristic zero,

Sym2E is semistable if E is. Therefore, passing to a suitable étale cover, we
can define Θ0

3 on the open subset SUC(2,OC)st using a Poincaré bundle. Note
that the bundle Sym2E and Sym2E⊗OC(−x) have isotropic line subbundles of



1152 I. CHOE AND G. H. HITCHING

the formN2 andN2(−x), respectively. Hence by Theorem 2.3, the images of Θ0
3

and Θ1
3 land on the components MO0

C(3,OC) and MO1
C(3,OC), respectively.

Now, using for example [15, Exercise II.5.16], it is straightforward to check
that if E ∼ E′, then Sym2E ∼ Sym2E′. Hence, as any semistable bun-
dle is a limit of stable ones, it follows that Θ3

0 has a continuous extension
to SUC(2,OC). As in the proof of Theorem 4.1, we can show that Θ0

3 is a
morphism by using the Riemann extension theorem.

As already noted, the moduli space SUC(2,OC) has Picard number 1. LetN
be any very ample line bundle on MO0

C(3,OC). Then
(
Θ0

3

)∗ N ∼= La for some
positive integer a, where L is as before the ample generator of Pic (SUC(2,OC)).
Therefore, as Θ0

3 is a morphism, it must be finite. Counting dimensions of the
projective varieties SUC(2,OC) and MO0

C(3,OC), it must be surjective. This
proves (a). The proof of (b) is similar. □

As in the rank four case, the following theorem ensures that an arbitrary
(possibly non-stable) L-valued orthogonal bundle of rank three has a similar
expression, and its proof shows how to find it.

Theorem 5.2. Let V be a rank three L-valued orthogonal bundle of determi-
nant M3 as above. Then V is isomorphic as an orthogonal bundle to Sym2E⊗
(detE)−1 ⊗M for some rank two bundle E.

Proof. We use an idea from [8], also applied in [6]. The isomorphism M2 ∼−→
L gives M the structure of an L-valued orthogonal bundle. The orthogonal
direct sum V ⊥ M is then L-valued orthogonal of rank four and determinant
M4 = L2. By Proposition 3.2, we can find a rank two isotropic subbundle
in V ⊥ M . By Theorem 4.2, there exist rank two bundles E1, E2 such that
V ⊥ M ∼= E1 ⊗ E2.

Now the subbundle M ⊂ E1 ⊗E2 is nowhere isotropic, being an orthogonal
direct summand. But as noted in Remark 4.4(b), the locus of isotropic vectors
corresponds precisely to the locus of maps E∗

1 → E2 of rank at most one.
Therefore, the image of M → E1⊗E2 is indecomposable at all points. Hence it
defines an isomorphism E∗

1⊗M
∼−→ E2. Moreover, E∗

1⊗M ∼= E1⊗(detE1)
−1⊗

M since E1 has rank two. It follows that

V ⊥ M ∼=
(
Sym2E1 ⊗ (detE1)

−1 ⊗M
)
⊕M.

By uniqueness of direct sum decomposition, we conclude that V ∼= Sym2E1 ⊗
(detE1)

−1 ⊗ M . By [13, Proposition 3.1], composing with an automorphism
of V if necessary, this may be assumed to be an isomorphism of orthogonal
bundles. □

5.2. Quadric fibration and isotropic subbundles

We consider an L-valued rank three orthogonal bundle V = Sym2E ⊗
(detE)−1 ⊗ M of determinant M3 as above. We now describe the locus of
isotropic lines QV ⊂ PV .
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Proposition 5.3. The fibration QV coincides with the relative Segre embedding

PE ↪→ PSym2E
∼−→ P(Sym2E ⊗ (detE)−1 ⊗M).

Proof. This follows easily from (5.1). For a geometric argument: By Theorem
5.2, we may assume that the quadratic form is induced from that V ⊥ M ∼=
E ⊗E ⊗ (detE)−1 ⊗M . Thus QV = QV⊥M ∩ PV . By Proposition 4.3, this is

(PE ×C PE) ∩
(
P(Sym2E ⊗ (detE)−1 ⊗M)

)
,

which is precisely the image of the relative Segre embedding, as desired. □

Theorem 5.4 (Isotropic Quot schemes in rank three). Let V = Sym2E ⊗
(detE)−1 ⊗M be as above. Write d := deg(E) and m := deg(M).

(a) For each integer e, there is an isomorphism

Quot◦1, 12 (e+d−m)(E)
∼−→ IQ◦

1,e(V )

given by N1 7→ N2
1 ⊗ (detE)−1 ⊗M .

(b) In particular, if N ⊂ V is any isotropic line subbundle, then deg(N) ≡
d−m mod 2.

Proof. Let N ⊂ V be an isotropic subbundle of degree e. Then N ⊗ (detE)⊗
M−1 is a line subbundle of Sym2E. By Proposition 5.3, this belongs to the
cone over the relative Segre embedding PE ↪→ PSym2E. Thus it is of the form
Sym2N1 for some N1 ⊂ E of degree 1

2 (e+ d−m). In particular, e ≡ d−m ≡ 0
mod 2. Clearly N1 is uniquely determined as an element of Quot◦1, 12 (e+d−m)(E).

The statement follows. □

Remark 5.5. A Riemann–Roch computation shows that Quot◦1, 12 (e+d−m)(E)

has expected dimension m − e − (g − 1), which coincides with the expected
dimension of IQ◦

1,e(V ) given in (2.7), in agreement with Corollary 4.7.

5.3. Enumeration of isotropic line subbundles

Together with Theorem 2.5, the above results allow us to count the num-
ber of isotropic line subbundles of maximal degree of a general stable V ∈
MOi

C(3,OC), when this is finite.

Theorem 5.6. Let V be a stable OC-valued orthogonal bundle of rank three
and trivial determinant.

(a) If g is even and V is general in MO1
C(3,OC)st, then V has 2g maximal

isotropic line subbundles of degree 1− g.
(b) If g is odd, and V is general in MO0

C(3,OC)st, then V has 2g maximal
isotropic line subbundles of degree 1− g.

Proof. By Theorem 5.4, maximal line subbundles of E are in bijection with
maximal isotropic line subbundles of Sym2E ⊗ (detE)−1. If g is even, then
by Theorem 2.5, a general E ∈ SUC(2,OC(x))st has 2g line subbundles N1

of degree 1 − g
2 . By Theorem 5.4, these induce 2g isotropic line subbundles
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N2
1 (−x) ⊂ Sym2E ⊗OC(−x) of degree 1− g, and we obtain (a). The proof of

(b) is similar. □

6. Rank six

As was the case for orthogonal bundles of ranks three and four, the rank
five case turns out to be closely related to the rank six case. Therefore we now
turn to L-valued orthogonal bundles of rank six admitting rank three isotropic
subbundles; equivalently, in view of Lemma 3.2, having determinant L3.

6.1. Rank six orthogonal bundles with rank three isotropic subbun-
dles

If W is any bundle of rank four and determinant L, then there is a natural
map

(6.1) ∧2W ⊗ ∧2W → ∧4W = L

given by the determinant. This endows ∧2W with the structure of an L-valued
orthogonal bundle. Furthermore, every rank three subbundle F ⊂ W defines a
rank three subbundle ∧2F ⊂ ∧2W , which is isotropic since ∧4F = 0. We shall
now show that up to a twist, any rank six orthogonal bundle admitting a rank
three isotropic subbundle is of the form ∧2W . (In §6.2, however, we shall see
that not every rank three isotropic subbundle need be of the form ∧2F , even
up to twisting.)

As in the previous sections, we shall use this to give a description of the
moduli spaces of rank six orthogonal bundles.

Theorem 6.1. Let x be any point of C.

(a) The association W 7→ ∧2W defines a finite surjective morphism

Θ0
6 : SUC(4,OC) → MO0

C(6,OC).

(b) The association W1 7→ ∧2W1 ⊗ OC(x) defines a finite surjective mor-
phism

Θ1
6 : SUC(4,OC(−2x)) → MO1

C(6,OC).

(c) The association W2 7→ ∧2W2 defines a finite surjective morphism

Φ6 : SUC(4,OC(x)) → MOC(6,OC(x)).

Proof. This is similar to the rank three case. As C has characteristic zero,
∧2W is semistable whenever W is. Using for example [15, Exercise II.5.16], one
checks that if W and W ′ are S-equivalent semistable bundles of rank four, then
∧2W and ∧2W ′ are S-equivalent. By a similar argument to that in Theorem
5.1, we obtain the existence, finiteness and surjectivity of the morphisms Θi

6

and Φ6. The target component of each Θi
6 is determined by Theorem 2.3 and

the parity of

deg(∧2F ) = 2 · deg(F ) and deg(∧2F )⊗OC(x) = 2 · deg(F ) + 3

for rank three subbundles F ⊂ W . □
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As in the previous cases, we describe a construction required for the next
proposition which shows how to get the “inverses” of the morphisms Θi

6 and
Φ6. Let V be a rank six L-valued orthogonal bundle admitting a rank three
isotropic subbundle E. Then by Criterion 2.1, there is an exact sequence
0 → E → V → E∗⊗L → 0, defining an extension class δ ∈ H1(C,∧2E⊗L−1).
Then δ also defines an extension 0 → ∧2E → W → L → 0 of rank four.

Proposition 6.2. Let V be an L-valued orthogonal bundle of rank six. Let E,
δ and W be as above. Then V is isomorphic to (∧2W )⊗ (detE)−1.

Proof. To ease notation, write Ê := ∧2E, a subbundle of W . We consider the
antisymmetrization map a : W ⊗W → ∧2W . By linear algebra, using the fact

that Ê has corank one, the restriction of a to W ⊗ Ê is surjective with kernel

Sym2Ê. Therefore, we have a diagram:

Sym2Ê
= //

��

Sym2Ê

��
0 // Ê ⊗ Ê //

a
��

W ⊗ Ê //

a

��

L⊗ Ê //

��

0

0 // ∧2Ê // ∧2W // L⊗ Ê // 0

In particular, ∧2W is an extension of class

(6.2) a∗(δ ⊗ IdÊ) ∈ H1(C,Hom(L⊗ Ê,∧2Ê)).

Now write M := ∧3E = detE. The association

u ∧ v 7→ (w 7→ u ∧ v ∧ w)

gives a canonical identification

(6.3) Ê = ∧2E = Hom(E,detE)
∼−→ E∗ ⊗M.

Similarly, we have canonical identifications

(6.4) ∧2Ê
∼−→ ∧2(E∗ ⊗M) ∼= ∧2E∗ ⊗M2 ∼−→ E ⊗M.

Thus ∧2W is an extension 0 → E ⊗M → ∧2W → E∗ ⊗M ⊗ L → 0, and

Hom(L⊗ Ê,∧2Ê) = L−1 ⊗ E ⊗M−1 ⊗ E ⊗M ∼= L−1 ⊗ E ⊗ E ⊗ End M.

Therefore, to prove the theorem, in view of (6.2), (6.3) and (6.4) it will suffice
to prove the following lemma. □

Lemma 6.3. The element a∗(p⊗ IdÊ) corresponds to −p⊗ IdM for each p ∈
L−1 ⊗ ∧2E.
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Proof. In what follows, we shall assume that L = OC , as the general case is only
notationally more cumbersome. Let p be any element of L−1⊗∧2E|x = ∧2E|x
for some x ∈ C. As E has rank three, we can write p = u∧v for some u, v ∈ E|x.
If p is nonzero, then we can choose w ∈ E|x such that u, v, w is a basis of E|x.
Let u∗, v∗, w∗ be the dual basis of E∗|x. Set m := u ∧ v ∧ w ∈ M |x. Then
u∗∧v∗∧w∗ = m∗, where m∗ ∈ M∗|x is dual to m (that is, ⟨m∗,m⟩ = 1). Then
via (6.3), we have identifications

(6.5) u ∧ v ↔ w∗ ⊗m, u ∧ w ↔ (−v)∗ ⊗m, and v ∧ w ↔ u∗ ⊗m.

Via these identifications, and using the contraction m∗ ⊗ m 7→ 1, the map
Id∧2E |x can be identified with

(u ∧ v)⊗m∗ ⊗ w + (u ∧ w)⊗m∗ ⊗ (−v) + (v ∧ w)⊗m∗ ⊗ u.

Thus p⊗ Id∧2E is expressed as

(u∧v)⊗(u∧v)⊗m∗⊗w+(u∧v)⊗(u∧w)⊗m∗⊗(−v)+(u∧v)⊗(v∧w)⊗m∗⊗u.

Substituting from (6.5) (thereby using the first identification in (6.4)), we ob-
tain

a∗(p⊗Id∧2E) = (w∗⊗m)∧((−v∗)⊗m)⊗m∗⊗(−v)+(w∗⊗m)∧(u∗⊗m)⊗m∗⊗u.

Applying the contraction m⊗m∗ 7→ 1, this becomes

(6.6) (w∗ ∧ v∗)⊗ v ⊗m+ (w∗ ∧ u∗)⊗ u⊗m.

Now since u∗ ∧ v∗ ∧w∗ = m∗, in particular w∗ ∧ v∗ is the dual basis element to
(−u)∗ ⊗m. Thus via the identification ∧2E∗ ∼−→ Hom(E∗,M−1) ∼= E ⊗M−1,
we see that w∗ ∧ v∗ corresponds to (−u)⊗m∗. Similarly, w∗ ∧ u∗ corresponds
to v ⊗m∗. Thus (6.6) is identified with

(−u)⊗m∗ ⊗ v ⊗m+ v ⊗m∗ ⊗ u⊗m,

corresponding to −(u ∧ v)⊗ IdM = −p⊗ IdM , as desired. □

We can now give a structure theorem for orthogonal bundles of rank six.

Theorem 6.4. Let V be an L-valued orthogonal bundle of rank six.

(a) The bundle V is isomorphic to ∧2W for some W of rank four and
determinant L if and only if V admits a rank three isotropic subbundle
of even degree.

(b) Let x be any point of C. Then V is isomorphic to ∧2W1 ⊗OC(x) for
some W1 of rank four and determinant L(−2x) if and only if V admits
a rank three isotropic subbundle of odd degree.

Note that (a) and (b) apply simultaneously when deg(L) is odd.

Proof. As the proofs of (a) and (b) are almost identical, we prove (b) only. Let
E be a rank three subbundle of V which is isotropic and of odd degree. By
Proposition 6.2, we have V ∼= ∧2W ⊗ detE∗, where 0 → ∧2E → W → L → 0
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is constructed from V and E as previously. By hypothesis, we can find N such
that detE ∼= N2(−x). Set W1 := W ⊗N−1. Then

detW1
∼= (detE)2 ⊗ L⊗N−4 ∼= N4(−2x)⊗ L⊗N−4 ∼= L(−2x),

and V ∼= ∧2W ⊗N−2 ⊗OC(x) = (∧2W1)⊗OC(x).
Conversely, if V = (∧2W1)⊗OC(x), then any rank three subbundle F ⊂ W1

yields a subbundle ∧2F ⊗ OC(x) ⊂ V which is isotropic since ∧4F = 0, and
has odd degree 2 · degF + 3. □

6.2. Enveloping bundle structure and isotropic subbundles

Let W be a bundle of rank four and determinant L, and let V := ∧2W be
the associated L-valued orthogonal bundle of rank six. By [12, pp. 209–211],
an element ω ∈ ∧2W belongs to the cone over the Plücker image of Gr(2,W )
in P(∧2W ) if and only if ω is decomposable; equivalently ω ∧ ω = 0 in ∧4W .
In view of (6.1), this is equivalent to ω being isotropic with respect to the
orthogonal structure on ∧2W . It follows that:

Proposition 6.5. The relative Plücker map embeds Gr(2,W ) in P(∧2W ) as
the projectivization Q∧2W of the locus of vectors isotropic with respect to the
orthogonal structure on ∧2W . In particular, P(∧2W ) is an enveloping bundle
for Q∧2W = Gr(2,W ) → C.

We shall also require the following lemma on isotropic subbundles of orthog-
onal bundles.

Lemma 6.6. Let V be an L-valued orthogonal bundle (of arbitrary rank) and
E ⊂ V any subbundle. Then E is isotropic if and only if PE ⊂ QV .

Proof. One direction is clear from the definition of QV . Conversely, suppose
PE ⊂ QV . Let v, w be elements of a fiber E|x. By symmetry of σ, we have

2 · σ(v ⊗ w) = σ ((v + w)⊗ (v + w))− σ(v ⊗ v)− σ(w ⊗ w).

By hypothesis, the right hand side is zero, so σ(v ⊗ w) = 0. □

Remark 6.7. Note that the above proof depends on the symmetry of the bilinear
form, and may fail in characteristic 2.

We shall use these observations to classify isotropic subbundles of V , be-
ginning with rank three. By Proposition 6.5 and Lemma 6.6, a rank three
subbundle E ⊂ V is isotropic if and only if the P2-subbundle PE ⊂ PV is
contained in Gr(2,W ). For such an E, by [12, p. 757], one of the following two
situations must arise:

(i) For each p ∈ C, there exists a three-dimensional subspace Fp ⊂ V |p
such that

PE|p = {Λ ∈ Gr(2,W |p) : Λ ⊂ Fp}.
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(ii) For each p ∈ C, there exists a line Np ⊂ W |p such that

PE|p = {Λ ∈ Gr(2,W |p) : Np ⊂ Λ}.

If situation (i) arises, then, using local triviality, there exists a rank three
subbundle F ⊂ W such that PE = Gr(2, F ). By definition of the Plücker
embedding Gr(2, F ) → P(∧2F ) ⊂ P(∧2W ) it follows that PE is the projec-
tivization of the set of bivectors

{v ∧ w : v, w ∈ F}.

As F has rank three, every element of ∧2F is of this form. Thus E = ∧2F . In
particular, degE = 2 · degF is even.

On the other hand, suppose situation (ii) arises. Then there is a line sub-
bundle N ⊂ W such that PE is the projectivization of {v∧w : v ∈ N,w ∈ W}.
We define a map τN : N ⊗W → ∧2W by

(6.7) τN (v ⊗ w) = v ∧ w.

Clearly τN has kernel N ⊗N and image exactly E. Thus E ∼= N ⊗ W
N , and

degE = 3 · degN + degW − degN = 2 · degN + degL.

In particular, degE ≡ degL mod 2. Now we can summarize the above dis-
cussion as follows.

Theorem 6.8. Let V = ∧2W be a rank six orthogonal bundle for a rank four
bundle W of determinant L. Set ℓ := degL and let d be any integer.

(a) Suppose ℓ is even. Then there is an isomorphism

Quot◦3,d(W ) ⊔Quot◦1,d− ℓ
2
(W )

∼−→ IQ◦
3,2d(V ).

In particular, IQ◦
3,2d(V ) is disconnected for d ≪ 0.

(b) Suppose ℓ is odd. Then there are isomorphisms

Quot◦3,d(W )
∼−→ IQ◦

3,2d(V ) and Quot◦
1,d− ℓ+1

2
(W )

∼−→ IQ◦
3,2d−1(V ).

In both cases, the isomorphisms are given respectively by

E 7→ ∧2E and N 7→ τN (N ⊗W ) ∼= N ⊗ W

N
.

Remark 6.9. A Riemann–Roch computation shows that Quot3,d(W ) and
Quot1,d− ℓ+ε

2
(W ) have the same expected dimensions, respectively, as those

given in (2.7) for IQ◦
3,2d(∧2W ) and IQ◦

3,2d−ε(∧2W ), in agreement with Theo-
rem 6.8.

Lastly, we treat the case where all rank three isotropic subbundles have odd
degree, so V is of the form ∧2W ⊗OC(x).
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Corollary 6.10. Suppose ℓ is even. Let W be a rank four bundle of determi-
nant L, and let V be the orthogonal bundle ∧2W ⊗ OC(x). Then for any d,
there are isomorphisms

Quot◦3,d−1(W ) ⊔Quot◦1,d−1− ℓ
2
(W )

∼−→ IQ◦
3,2d+1(V ),

given by{
E 7→ ∧2E ⊗OC(x) if E ∈ Quot◦3,d−1(W );

M 7→ τN (N ⊗W )⊗OC(x) ∼= N ⊗ W
N ⊗OC(x) if E ∈ Quot◦1,d−1− ℓ

2
(W ).

In particular, IQ◦
3,2d+1(V ) is disconnected for d ≪ 0.

Proof. For any rank six L-valued orthogonal V , tensor product by OC(x) de-

fines a canonical isomorphism IQ◦
3,2d−2(V )

∼−→ IQ◦
3,2d+1(V ⊗OC(x)). Thus the

statement follows from Theorem 6.8(a). □

Remark 6.11. The fact that the isotropic Quot schemes of W may have two
connected components reflects that fact that the isotropic Grassmann bundle
OG(3,∧2W ) has two components. This is studied in more generality in [6].
Further detail for rank six is given in Remark 7.6.

Let us now consider isotropic subbundles of rank two or one. For brevity,
we shall suppose throughout that V is of the form ∧2W ; the case V = ∧2W ⊗
OC(x) is left to the reader.

Let F ⊂ V be a rank two isotropic subbundle. This corresponds to a P1-
subbundle of the Grassmannian bundle Gr(2,W ) → C. By [12, pp. 756–757],
any P1 lying inside Gr(2, 4) is of the form

{Λ ∈ Gr(2, 4) : p ⊂ PΛ ⊂ h}
for some fixed point p and hyperplane h in P3. Using local triviality as above,
there exists a flag of subbundles N ⊂ H ⊂ W with rk (N) = 1 and rk (H) = 3
such that for each x ∈ C we have

PF |x = {Λ ∈ Gr(2,W |x) : N |x ⊂ Λ ⊂ H|x}.
It follows that

F = {v ∧ w : v ∈ N, w ∈ H} = τN (N ⊗H),

where τN is the map defined in (6.7). Hence F ∼= (N ⊗ H)/(N ⊗ N) and
deg(F ) = deg(H) + deg(N). As a consequence, we obtain:

Theorem 6.12. For any rank four bundle W , there is an identification

IQ◦
2,d(∧2W ) ∼=

⋃
d1+d2=d

Quot◦1,d1
(H),

where π : Quot◦1,d1
(H) → Quot◦3,d2

(W ) is the relative Quot scheme with π−1(H)

= Quot◦1,d1
(H) at H ∈ Quot◦3,d2

(W ), which parameterizes the flags N ⊂ H ⊂
W given as above.
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Remark 6.13. Notice that the rank two isotropic subbundle τN (N ⊗ H) is
exactly the intersection of the rank three isotropic subbundles τN (N ⊗ W )
and ∧2H, which belong to opposite components of OG(V ). Compare with
[12, Proposition, p. 735]. We discuss another aspect of this in Remark 7.6.

Lastly, by Theorem 6.5, an isotropic line subbundle of ∧2W is simply a
section of Gr(2,W ) → C. But this is equivalent to a choice of rank two
subbundle E ⊂ W , and then N = ∧2E. Thus we have:

Theorem 6.14. Let W be any rank four bundle and ∧2W the associated or-
thogonal bundle. Then IQ◦

1,d(∧2W ) ∼= Quot◦2,d(W ).

6.3. Enumeration of maximal isotropic subbundles

We now apply the previous results to the problem of enumerating isotropic
subbundles of maximal degree of a general rank six L-valued orthogonal bundle
V , when there are finitely many of these. For ranks one and two, for brevity
we restrict to the case V ∼= ∧2W with det(W ) ∼= OC .

Theorem 6.15. Let V be a rank six OC-valued orthogonal bundle which is
general in its component of moduli.

(a) Suppose g ≡ 1 mod 4 and w2(V ) = 0. Then V has 2 · 4g rank three
isotropic subbundles of maximal degree − 3

2 (g − 1).
(b) Suppose g ≡ 3 mod 4 and w2(V ) = 1. Then V has 2 · 4g rank three

isotropic subbundles of maximal degree − 3
2 (g − 1).

(c) Suppose that g ≡ 1 mod 12 and w2(V ) = 0. Then V has 12g rank two
isotropic subbundles of maximal degree − 5

3 (g − 1).
(d) Suppose w2(V ) = 0. Then V has

23g−1 − (−1)g · 22g−1

isotropic line subbundles of maximal degree 1− g.

Proof. (a) By Theorem 6.1(a), we have V ∼= ∧2W for some W ∈ SUC(4,OC),
which may assumed to be general in moduli. Note that W ∗ may also be
assumed to be general in moduli, and that Quot3,d(W ) ∼= Quot1,d(W

∗). Thus,
as deg(W ) ≡ 1− g mod 4, by Theorem 2.5 the bundles W and W ∗ both have
4g maximal line subbundles of degree 3

4 (g−1). By Theorem 6.8(a), the bundle

V contains 2 · 4g rank three isotropic subbundles of maximal degree − 3
2 (g− 1).

(b) By Theorem 6.1(b), we have V ∼= ∧2W1 ⊗ OC(x) for some W1 ∈
SUC(4,OC(−2x)), which may be assumed to be general in moduli. As −2 ≡
1− g mod 4, by Theorem 2.5 both the bundles W1 and W ∗

1 have 4g maximal
line subbundles of degree d and d + 1, respectively, for d = 1

4 (1 − 3g). By
Corollary 6.10, we have

IQ◦
3,2d+1(V ) ∼= Quot◦3,d−1(W1) ⊔Quot◦1,d(W1).

Since Quot◦3,d−1(W1) ∼= Quot◦1,d+1(W
∗
1 ), we get the desired number.
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(c) Here V = ∧2W is as in part (a). By hypothesis, in particular g ≡ 1
mod 4, so a general W ∈ SUC(4,OC) has 4

g maximal rank three subbundles of
degree − 3

4 (g − 1). By [19, Lemma 2.1], these maximal subbundles are general
in moduli. As by hypothesis we also have g ≡ 1 mod 3, each maximal rank
three H ⊂ W has 3g maximal line subbundles, each of degree − 11

12 (g−1). Thus
there are 4g · 3g = 12g flags N ⊂ H ⊂ W , where both N ⊂ H and H ⊂ W are
maximal subbundles. By Theorem 6.12, then, V has 12g isotropic subbundles
of rank two and maximal degree

−3

4
(g − 1)− 11

12
(g − 1) = −5

3
(g − 1).

(d) Using the formulas in [18, §4], one finds that a general bundle of rank
four and degree zero has a finite number of rank two subbundles of maximal
degree 1− g, the number being given as follows:

(6.8) 24g−3 ·
∑

z∈{−1,±
√
−1}

(
z(1− z)2

)1−g
= 23g−1 + (−1)g−1 · 22g−1.

The statement now follows from Theorem 6.14. □

Remark 6.16. By the Hirschowitz bound [16], every rank six vector bundle of
degree zero has a rank two subbundle of degree at least − 4

3 (g−1). This means

that a general V ∈ MO0
C(6,OC) does have rank two subbundles of degree

greater than − 5
3 (g − 1), all of which are nonisotropic.

Theorem 6.17. Let V be a rank six OC(x)-valued orthogonal bundle of deter-
minant OC(3x) which is general in moduli. Suppose g is even. Then V has 4g

isotropic rank three subbundles of maximal degree 3− 3
2g.

Proof. By Theorem 6.1(c), we have V ∼= ∧2W2 for some W2 ∈ SUC(4,OC(x)),
which may be assumed to be general in moduli. There are two cases.

If g ≡ 0 mod 4, put d := 2− 3
4g, so that 2d−1 = 3− 3

2g. Then by Theorem
6.8 (b), we have IQ◦

2d−1(V ) ∼= Quot◦1,d−1(W2).

If g ≡ 2 mod 4, put d := 3
2 − 3

4g, so that 2d = 3 − 3
2g. Then by Theorem

6.8 (b), we have IQ◦
3,2d(V ) ∼= Quot◦3,d(W2) ∼= Quot◦1,d−1(W

∗
2 ).

Applying Theorem 2.5 to Quot◦1,d−1(W2) and Quot◦1,d−1(W
∗
2 ), we get the

desired number. □

7. Rank five

Let L be a line bundle, and V an L-valued orthogonal bundle of rank five.
By (2.1), necessarily L has even degree 2m, and detW ∼= M5 for some M
satisfying M2 ∼= L. We shall use the results in §6 to analyze the structure of
V , in particular the relation with rank four symplectic bundles.
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7.1. Structure of rank five orthogonal bundles

Let M be a line bundle and W a rank four bundle with a symplectic form
α : ∧2 W → M . Then deg(W ) = 2 · deg(M), and SW := Ker

(
α : ∧2 W → M

)
is a rank five subbundle of determinant M5. Note that SW depends on the
choice of α, but if for example W is stable, then α is unique up to nonzero
scalar multiple.

Proposition 7.1. The bundle SW is M2-valued orthogonal, and there is an
orthogonal direct sum decomposition ∧2W = SW ⊥ M .

Proof. As W is M -valued symplectic, detW ∼= M2. Thus SW inherits the
symmetric bilinear form σ : (∧2W )⊗2 → M2 given by the determinant, as
discussed in the previous section. Let us show that σ|(SW )⊗2 is nondegenerate.

Suppose η ∈ SW |p is such that σ(η ∧ −) is the zero functional on SW |p. Then
in particular η ∧ η = 0, so η is decomposable. Furthermore, as

η ∈ Ker
(
α|p : ∧2 W |p → M |p

)
,

if η is nonzero, then η = v∧w where v and w span a subspace Λ ⊂ W |p isotropic
with respect to α. But then for any v′, w′ ∈ W |p spanning an α-isotropic
subspace complementary to Λ, we have v′ ∧w′ ∈ SW |p and v ∧w ∧ v′ ∧w′ ̸= 0
in M2|p. Thus η must be zero, and σ|(SW )⊗2 is nondegenerate. Hence SW is

M2-valued orthogonal.
For the rest, by the nondegeneracy, SW ∩ (SW )⊥ = 0 in ∧2W . Comparing

determinants, we see that (SW )⊥ ∼= M . Therefore, ∧2W = SW ⊥ M as
desired. □

Again, we get morphisms of moduli spaces from this observation. For any
line bundle M , we denote by MSC(4,M) the moduli space of semistable M -
valued symplectic bundles of rank 4 over C. This is a closed irreducible subva-
riety of SUC(2n,M

n) of dimension 10(g − 1).

Theorem 7.2. Let x be any point of C.

(a) The association W 7→ SW defines a finite surjective morphism

Θ0
5 : MSC(4,OC) → MO0

C(5,OC).

(b) The association W1 7→ SW1 ⊗ OC(x) defines a finite surjective mor-
phism

Θ1
5 : MSC(4,OC(−x)) → MO1

C(5,OC).

Proof. Let M̃ be an étale cover of MSC(4,OC)st admitting a Poincaré family

W → M̃ × C together with a symplectic form α̃ : ∧2 W → O
M̃×C

. Then

by Proposition 7.1 we see that SW := Ker(α̃) is a family of rank five or-
thogonal bundles. Moreover, since C has characteristic zero, if a bundle W
is stable then ∧2W is polystable. Hence the family SW defines a morphism

M̃ → MO0
C(5,OC) which factorizes via a morphism Θ0

5 : MSC(4,OC)st →
MO0

C(5,OC).
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Next, note that if W and W ′ are S-equivalent semistable OC-valued sym-
plectic bundles, then

gr(SW )⊕OC = gr(∧2W ) ∼= gr(∧2W ′) = gr(SW ′)⊕OC .

Therefore, if W ∼ W ′, then SW ∼ SW ′ . Now by [3], the moduli space
MSC(4,OC) has Picard number one. Thus part (a) can be proven similarly as
before. The proof of (b) is similar.

As before, the target component is determined by the parity of degree of
rank two isotropic subbundles. The details are described in Theorem 7.3. □

As in previous cases, we now describe how to construct an “inverse” for the
operation W 7→ SW , which is valid for an arbitrary L-valued orthogonal bundle
of rank five.

Theorem 7.3. Let L be a line bundle of degree 2m, and V a rank five L-valued
orthogonal bundle of determinant M5, where M2 ∼= L.

(a) The bundle V admits an isotropic subbundle E of rank two.
(b) If deg(E) ≡ m mod 2, then there is an M -valued symplectic bundle

(W,α) of rank four (and determinant L) such that V ∼= SW .
(c) If deg(E) ̸≡ m mod 2, then there is an M(−x)-valued symplectic bun-

dle (W1, α1) of rank four (and determinant L(−2x)) such that V ∼=
SW1

⊗OC(x).

Proof. As M2 ∼= L, in fact M itself is an L-valued orthogonal bundle. The
orthogonal direct sum V ⊥ M is a rank six orthogonal bundle of determinant
L3. Then V ⊥ M admits a rank three isotropic subbundle E by Proposition
3.2. It is easy to see that

E := E ∩ V = Ker
(
E → (V ⊥ M) → M

)
is an isotropic subbundle of rank two in V . Thus we obtain (a).

Note moreover that deg(E) + m = deg(E). Suppose deg(E) ≡ m mod 2.
Then deg(E) is even. By Theorem 6.4(a), there exists a bundle W of rank four
and determinant L such that V ⊥ M ∼= ∧2W .

Now the subbundle M ⊂ ∧2W is nowhere isotropic with respect to the
orthogonal structure, being an orthogonal direct summand. By Proposition 6.5,
vectors in ∧2W isotropic with respect to the orthogonal structure correspond
precisely to the decomposable tensors. Therefore, the image of M → ∧2W is
indecomposable at all points. Tensoring by W ∗ and contracting, we obtain an
antisymmetric isomorphism

M ⊗W ∗ →
(
∧2W

)
⊗W ∗ → W,

equivalently, an M -valued symplectic structure on W . By Proposition 7.1, we
have

V ⊥ M = ∧2W = SW ⊥ M.
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By uniqueness of direct sum decompositions, we have V ∼= SW as vector bun-
dles; and by [13, Proposition 3.1] they are isomorphic as orthogonal bundles.
This proves (b).

If deg(E) ̸≡ m mod 2, then deg(E) is odd. Then V (−x) ⊥ M(−x) is
L(−2x)-valued orthogonal and admits the isotropic subbundle E(−x) which is
of rank three and even degree. By part (a), there exists a rank four M(−x)-
valued symplectic bundle W1 such that V (−x) ∼= SW1

, as desired. □

7.2. Enveloping bundle structure

Let W be a rank four M -valued symplectic bundle as above, and V = SW

the associated rank five M2-valued orthogonal bundle. We now determine the
quadric fibration QV ⊂ PV .

By Proposition 6.5, the projective bundle P(∧2W ) is an enveloping bundle
for Q∧2W = Gr(2,W ). As the orthogonal structure on V is inherited from
∧2W , we have

QSW
= Q∧2W ∩ PV.

Now recall from [12, p. 759 ff.] that a linear line complex in P3 is a three-
dimensional family of lines defined by a hyperplane section of the Plücker image
of Gr(2,C4) in P5. The datum of a linear line complex is equivalent to a choice
of bilinear antisymmetric form on C4 up to scalar, which is nondegenerate
if and only if the intersection is smooth; equivalently, the hyperplane is not
tangent to Gr(2,C4) at any point. By the above discussion, for each p ∈ C,
the hyperplane PV ⊂ P(∧2W ) determines a smooth linear line complex in
PW |p. Clearly this is isomorphic to the Lagrangian Grassmannian LG(W |p)
parameterizing two-dimensional α-isotropic subspaces of W |p. Summarizing,
we have:

Proposition 7.4. Let V = SW be as above. Then the projectivization of the
locus of isotropic vectors in PV is the Lagrangian Grassmann bundle LG(W ).

7.3. Isotropic subbundles of SW

Let W be a rank four M -valued symplectic bundle. To classify rank two
isotropic subbundles of the rank five M2-valued orthogonal bundle SW , we
could use a strategy similar to that in [6, §8]. However, we offer instead an
approach exploiting the geometry of the enveloping bundle, which also gives
further insight into the rank six case.

Let E ⊂ SW be a rank two isotropic subbundle. Then PE is a P1-bundle
contained in LG(W ). As above, by nondegeneracy of the symplectic form,
for each p ∈ C the intersection P(SW |p) ∩ Gr(2,W |p) is smooth. Then by
[12, p. 759], there exist a line Np and a hyperplane Hp in W |p such that
PW parameterizes the pencil of two-dimensional (isotropic) subspaces of V |p
forming a complete flag

0 ⊂ Np ⊂ Λ ⊂ Hp ⊂ W |p.
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It follows that

(7.1) E|p = {v ∧ w ∈ ∧2W : v ∈ Np, w ∈ Hp} ∼= Np ⊗
Hp

Np
.

We claim moreover that Hp = N⊥
p , the orthogonal complement of Np with

respect to the symplectic form α. To see this, Hp contains a pencil of two-
dimensional subspaces containing Np which are moreover isotropic, so in par-
ticular annihilate Np. As Hp has dimension three, it is spanned by elements
of N⊥

p . As dim(N⊥
p ) = dimHp, we have equality. Using local triviality, we see

that the union of the subspaces Np is a (uniquely determined) line subbundle
N ⊂ W .

We now define a map λN : N ⊗N⊥ → ∧2W by

λN (v ⊗ w) = v ∧ w.

Clearly, λN is the restriction to N ⊗N⊥ of the map τN defined in (6.7), and

λN (N ⊗N⊥) = τN (N ⊗ V ) ∩
(
∧2N⊥) ∼= N ⊗ N⊥

N
.

Now as N⊥/N is M -valued symplectic of rank two, it has determinant M and
degree m. Thus deg Im (λN ) = 2 · degN +m.

Conversely, given any line subbundle N ⊂ W , the subbundle λN (N ⊗N⊥)
is a rank two subbundle of ∧2W . As α(v ∧w) = 0 for any v ∈ N and w ∈ N⊥,
we have Im (λN ) ⊆ Ker

(
α : ∧2 W → M

)
= SW . As moreover every element

of Im (λN ) is decomposable, PIm (ΛN ) is contained in Q∧2W ∩PSW = LG(W ).
Hence Im (ΛN ) is isotropic by Lemma 6.6. Thus we may summarize as follows.

Theorem 7.5. The association N 7→ λN (N ⊗ N⊥) defines isomorphisms

Quot◦1,d(W )
∼−→ IQ◦

2,2d+m(SW ). Note also that the association N 7→ Im (λN )⊗
OC(x) defines an isomorphism

Quot◦1,d(W ) ∼= IQ◦
2,2d+m+2(SW ⊗OC(x)).

Remark 7.6. Let E be a rank two isotropic subbundle of SW . We observe from
the description (7.1) that

E = τN (N ⊗ V ) ∩
(
∧2N⊥) ;

that is, E is the intersection of two isotropic rank three subbundles ∧2N⊥ and
N ⊗ W

N of the rank six orthogonal bundle ∧2W , as described in Theorem 6.8.
Moreover, in view of [12, Proposition, p. 735], the fact that

dim
(
∧2
(
N⊥|p

)
∩ λN (N ⊗N⊥)

)
= 2 ̸≡ 3 mod 2

reflects the fact that these two subbundles define elements of opposite compo-
nents of the orthogonal Grassmannian OG(3,∧2V |p) at each point.

Next, by Theorem 7.4, an isotropic line subbundle of SW is nothing but a
section of the Lagrangian Grassmannian bundle LG(W ) → C. This equivalent
to a choice of rank two isotropic subbundle E ⊂ W , and then ∧2E is the
isotropic line subbundle of SW . Thus we have:
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Theorem 7.7. Let W be an M -valued symplectic bundle and SW the associated
rank five M2-valued orthogonal bundle. Then for each d, the assignment E 7→
∧2E defines an isomorphism

LQ◦
d(W )

∼−→ IQ◦
1,d(SW ),

where LQ◦
d(W ) is the subscheme of Quot◦2,d(W ) consisting of Lagrangian (max-

imal rank isotropic) subbundles of the symplectic bundle W .

7.3.1. Enumeration of maximal isotropic subbundles. By Theorem 7.5, the
number of rank two isotropic subbundles of maximal degree of V equals the
number of maximal line subbundles of the rank four symplectic bundle W .
However, the counting formula in Theorem 2.5 is valid only for a general vector
bundle of rank four, while the symplectic bundles of rank four are contained
in a proper closed subset of the moduli of vector bundles, so we cannot apply
Theorem 2.5 directly. Therefore, we leave the following as a conjecture.

Conjecture 7.8. Let V be a stable rank five OC-valued orthogonal bundle
which is general in its component of moduli.

(a) Suppose g ≡ 1 mod 4. Suppose w2(V ) = 0, so that V ∼= SW for a
W ∈ MSC(4,OC) which may be assumed to be general. Then V has
4g maximal rank two isotropic subbundles, each of degree − 3

2 (g − 1).
(b) Suppose g ≡ 3 mod 4. Suppose w2(V ) = 1, so that V ∼= SW1 ⊗OC(x)

for some W1 ∈ MSC(4,OC(−x)) which may be assumed to be general.
Then V has 4g rank two isotropic subbundles of maximal degree − 3

2 (g−
1).

On the other hand, for isotropic line subbundles we have the following.

Theorem 7.9. Let V be a rank five OC-valued orthogonal bundle which is
general in its component of moduli. Then each isotropic line subbundle has
degree 1− g, and the number of such subbundles is given by

g even g odd
w2(V ) = 0 2g−1 · (3g − 1) 2g−1 · (3g + 1)
w2(V ) = 1 2g−1 · (3g + 1) 2g−1 · (3g − 1)

.

Proof. Suppose w2(V ) = 1. By Theorem 7.2(b), we may assume that V =
SW ⊗OC(x) for a rank four OC(−x)-valued symplectic W which is general in
moduli. By Theorem 7.7, each maximal isotropic line subbundle is of the form
(∧2E)⊗OC(x) for a maximal Lagrangian subbundle E ⊂ W . By [5, Proposition
3.2] we have deg(E) = −g, whence deg(∧2E⊗OC(x)) = 1−g; and the number
of such E is given by [5, Corollary 6.3(2) and (4)]. The case where w1(V ) = 0
is similar. □

8. Higher rank

We shall now conclude by formulating some conjectures on orthogonal bun-
dles of higher rank and their isotropic Quot schemes in general, based on the
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extra geometric information for low rank gathered in the previous sections. We
shall use results from the literature to a greater extent than before.

Let i ∈ {0, 1}. By [7, §5.4] and [8, Theorem 6.1], a general V ∈MOi
C(2n,OC)

or MOi
C(2n−1,OC) has a finite number of isotropic subbundles of rank n and

maximal degree − 1
2n(g − 1) under the following congruence condition:

n(g − 1) ≡ 2i mod 4.

We denote this number by N0(g, r), where r = 2n or 2n− 1.
Theorems 4.12, 5.6 and 6.15 and Conjecture 7.8 suggest the following equal-

ities for arbitrary rank:

Conjecture 8.1. Let g, r, n, i be as above. For all r ≥ 3, we have

N0(g, 2n) = 2 ·N0(g, 2n− 1).

An intuition behind the conjecture is as follows. We have briefly mentioned
the orthogonal Grassmannian bundle OG(V ) of an orthogonal bundle V , which
parameterizes isotropic subspaces of maximal dimension in fibers of V ; equiv-
alently, projective linear subspaces of maximal dimension contained in the
quadrics QV |x. If V has rank 2n, then by [6, Proposition 2.12], the fibra-
tion OG(V ) has two connected components OG(V )0 and OG(V )1. (This has a
particularly clear geometric interpretation in rank four; see Remark 4.9.) Fol-
lowing [6, Definition 3.1], we define IQ◦

n,e(V )δ to be the component of IQ◦
n,e(V )

parameterizing subbundles belonging to OG(V )δ. By [8, Proposition 3.4(3)]
and [6, ], for all e, there are canonical isomorphisms

IQ◦
n,e (V ⊥ OC)δ

∼−→ IQ◦
n−1,e(V )

for δ ∈ {0, 1}. (See Remark 7.6 for related discussion for rank five.) In partic-
ular, the number of maximal isotropic subbundles of V ⊥ OC is exactly twice
that of V . However, since a bundle of the form V ⊥ OC is not general in
MOi

C(2n,OC), we need an argument on the conservation of number.
The same argument suggests:

Conjecture 8.2. If a general V ∈MOC(2n,OC) has a finite number N0(g, 2n)
of rank n maximal isotropic subbundles, then exactly half of them define sections
of OG(V )0 and another half those of OG(V )1.

In a forthcoming paper with D. Cheong, we propose to compute the numbers
N i(r, g) more generally and to investigate the validity of the above conjectures
in general.

References

[1] V. Balaji and C. S. Seshadri, Semistable principal bundles. I. Characteristic zero, J.

Algebra 258 (2002), no. 1, 321–347. https://doi.org/10.1016/S0021-8693(02)00502-1

[2] A. Beauville, Orthogonal bundles on curves and theta functions, Ann. Inst. Fourier
(Grenoble) 56 (2006), no. 5, 1405–1418.

https://doi.org/10.1016/S0021-8693(02)00502-1


1168 I. CHOE AND G. H. HITCHING

[3] A. Beauville, Y. Laszlo, and C. Sorger, The Picard group of the moduli of G-bundles on

a curve, Compositio Math. 112 (1998), no. 2, 183–216. https://doi.org/10.1023/A:

1000477122220
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