DOI QR코드

DOI QR Code

Research Trends in the Development of Martian Soil Simulants for the Evaluation of Rover Mobility Performance

탐사로버의 주행성능 검토를 위한 인공 화성 토양 개발관련 연구 동향

  • Byung-Hyun Ryu (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Seung-Soo Park (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Hyu-Soung Shin (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
  • 유병현 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 박승수 (한국건설기술연구원 미래스마트연구본부) ;
  • 신휴성 (한국건설기술연구원 미래스마트연구본부)
  • Received : 2023.09.11
  • Accepted : 2023.10.06
  • Published : 2023.10.31

Abstract

Scientific exploration of extraterrestrial planets has gripped human imagination since the advent of space travel. Human missions to Mars could produce insight into the essential questions of how, when and where life began on Earth. Such missions would only be feasible using local space resources materials, a concept called in situ-resource utilization (ISRU). The purpose of this paper is to provide a thorough review of the currently available Mars soil simulants and to determine those with geotechnical properties most appropriate for vehicle mobility studies. Sourcing and processing are considered since full-scale studies require bulk quantities of material on the order of tens of tons. This review identifies the simulants with the highest fidelity to Mars wind drift soils. In addition, recommendation guide for mars soil simulant development made.

우주 여행이 시작된 이래로 우주 행성에 대한 과학적 탐사는 인간의 상상력을 높이고 있다. 화성에 대한 임무는 지구에서 생명체가 언제, 어디서, 어떻게 시작되었는지에 대한 중요한 질문에 답을 제공할 수 있으며, 이 임무는 현지 우주 자원 활용(ISRU) 개념을 통해서만 실행 가능하다. 이 논문에서는 현재 우주 강국들을 중심으로 진행 중인 화성 탐사를 다루며, 인공 화성토양 조사와 탐사 로버의 이동성 연구를 중점으로 다루고 있다. 화성의 실제 지상 환경을 모사하기 위해서는 수십 톤의 토양이 필요하므로 원료 확보와 처리 과정도 고려되어야 한다. 이를 위해 화성 표면 토양과 유사한 특성을 가진 인공 토양을 선별하고, 인공 화성토양 개발을 위한 필요 사항을 제시한다. 이 연구를 통해 화성 탐사 임무에서 로버의 이동성을 평가하는 데 필요한 적절한 화성 토양을 개발하는 데 도움이 될 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20230081-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

References

  1. Allen, C.C., Morris, R.V., Jager, K.M., Golden, D.C., Lindstrom, D.J., Lindstrom, M.M., and Lockwood, J.P., 1998, Martian soil simulant available for scientific, educational study, Eos Trans., 79(34), 405-409.  https://doi.org/10.1029/98EO00309
  2. Arvidson, R., Anderson, P., Bartlett, P., Christensen, P., Chu, K., Davis, B., Ehlmann, M., Golombek, S., Gorevan, E., Guinness, A., Haldemann, K., Herenhoff, G., Landis, R., Li, D., Ming, T., Myrick, T., Parker, L., Richter, F., Seelos, and Soderblom, L., 2004, Localization and Physical Properties Experiments Conducted by Opportunity at Meridiani Planum, Science, 306(5702), 1730-1733.  https://doi.org/10.1126/science.1104211
  3. Baker, L.L., Agenboard, D.J., and Wood, S.A., 2000, Experimental hydrothermal alteration of a martian analog basalt: implications for martian meteorites, Meteoritics Planet Sci., 35(1), 31-38.  https://doi.org/10.1111/j.1945-5100.2000.tb01971.x
  4. Brunskill, C., Patel, N., Gouache, T.P., Scott, G.P., Saaj, C.M.., Matthews, M., and Cui, L., 2011, Characterisation of martian soil simulants for the ExoMars rover testbed, J. Terramechanics, 48(6), 419-438.  https://doi.org/10.1016/j.jterra.2011.10.001
  5. Cannon, K.M., Britt, D.T., Smith, T.M., Fritsche, R.F., and Batcheldor, D., .2019, Mars global simulant MGS-1: a Rocknest-based open standard for basaltic martian regolith simulants, Icarus, 317, 470-478.  https://doi.org/10.1016/j.icarus.2018.08.019
  6. Christeinsen, P. and Moore, H., 1992, The Martian Surface Layer, in Mars, University of Arizona Press, 686-729.
  7. Chunmei, H., Zeng, X., and Wilkinson, A., 2013, Geotechnical Properties of GRC-3 Lunar Simulant, ASCE Journal of Aerospace Engineering, 26(3), 528-534.  https://doi.org/10.1061/(ASCE)AS.1943-5525.0000162
  8. CLASS Exolith Lab, 2018, in: Kevin M. Cannon, Mike Conroy, Daniel T. Britt (Eds.), Datsheet for MGS-1C clay ISRU, University of Central Florida, USA, November. 
  9. Golombek, M.P., 1999. Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results, Journal of Geophysical Research, 104(E4), 8523-8553.  https://doi.org/10.1029/98JE02554
  10. Gouache, T.N., Patel, C., Brunskill, G., Scott, C., Matthews, S.M., and Cui, L., 2011, Soil Simulant Sourcing for the ExoMars Rover Testbed, Pleantary and Space Sciences, 59(8), 779-787.  https://doi.org/10.1016/j.pss.2011.03.006
  11. Marlow, J., Martins, Z., and Sephton, M., 2008, Mars on Earth: Soil Analogues for Future Mars Missions, Astronomy & Geophysics, 49(2), 2.20-2.23. 
  12. Moore, H. and Jakosky, B.H., 1989, Viking Landing Sites, Remote-Sensing Observations, and Physical Properties of Martian Surface Materials, ICARUS, 81(1), 164-184.  https://doi.org/10.1016/0019-1035(89)90132-2
  13. Moore, H., Bickler, D., Crisp, J., Eisen, H., Gensler, J., Haldemann, A., Majevic, T., Reid, L., and Pavlics, F., 1999, Soil-like deposits observed by Sojourner, the Pathfinder Rover, Journal of Geophysical Research Planets, 104(E4), 8729-8746.  https://doi.org/10.1029/1998JE900005
  14. NASA, 2019, NASA Science: Mars Exploration Program: Missions, [Online], Available: https://mars.nasa.gov/#missions. 
  15. Oravec, H.A., Asnani, V.M., Creage, C.M., Moreland, S.J., 2021, Geotechnical review of existing Mars soil simulants for surface mobility, in: Earth and Space, 157-170. 
  16. Oravec, H.A., Zeng, X., and Asnani, V.M., 2010, Design and characterization of GRC-1: A soil for lunar terramechanics testing in Earth-ambient conditions, Journal of Terramechanics, 47(6), 361-377.  https://doi.org/10.1016/j.jterra.2010.04.006
  17. Perko, H., Nelson J., and Green, J., 2006, Mars Soil Mechanical Properties and Suitability of Mars Soil Simulants, ASCE Journal of Aerospace Engineering, 19(3), 169-176.  https://doi.org/10.1061/(ASCE)0893-1321(2006)19:3(169)
  18. Peters, G., Abbery, W., Bearman, G., Mungas, G., Smith, J., Anderson, R., Douglas S., and Beegle, L., 2008, Mojave Mars Simulant - Characterization of a new Geologic Mars Analog, Icarus, 197(2), 470-479.  https://doi.org/10.1016/j.icarus.2008.05.004
  19. Scott, A.Oze, C., Tang Y., and O'Loughlin, A., 2017, Development of Martian Regolith Simulant for In-Situ Resource Utilization Testing, Acta Astronautica, 131, 45-49.  https://doi.org/10.1016/j.actaastro.2016.11.024
  20. The Martian Garden, 2019a, Safety data sheet: MMS-1, revised, https://www.themartiangarden.com/s/SDS-MMS-1-Mars-RegolithSimulant.pdf. 
  21. The Martian Garden, 2019b, Safety data sheet: MMS-2, revised, https://www.themartiangarden.com/s/MMS-2-SDS.pdf. 
  22. Zeng, X., and Wilkinson, A., 2013, Geotechnical Properties of GRC-3 Lunar Simulant, Journal of Aerospace Engineering, 26(3), 528-534.  https://doi.org/10.1061/(ASCE)AS.1943-5525.0000162
  23. Zeng, X., Li, W., Wang, N., Pring, S., Tang, H., Li, Y., and Feng, J., 2015, JMSS-1: A New Martian Soil Simulant, Earth, Planets and Space, 67(1), 1-10.  https://doi.org/10.1186/s40623-014-0143-5