DOI QR코드

DOI QR Code

희토류 산화물이 첨가된 YSZ 기반의 열차폐 코팅용 소재의 상 형성 및 기계적 특성

Formation of Phases and Mechanical Properties of YSZ-Based Thermal Barrier Coating Materials Doped with Rare Earth Oxides

  • 최용석 (한국세라믹기술원 이천분원 엔지니어링 소재센터) ;
  • 이계원 (한국세라믹기술원 이천분원 엔지니어링 소재센터) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 오윤석 (한국세라믹기술원 이천분원 엔지니어링 소재센터)
  • Yong Seok Choi (Korea Institute of Ceramic Engineering and Technology, Engineering Materials Center) ;
  • Gye Won Lee (Korea Institute of Ceramic Engineering and Technology, Engineering Materials Center) ;
  • Sahn Nahm (Department of Materials Science and Engineering, Korea University) ;
  • Yoon suk Oh (Korea Institute of Ceramic Engineering and Technology, Engineering Materials Center)
  • 투고 : 2023.09.04
  • 심사 : 2023.10.11
  • 발행 : 2023.10.28

초록

This study focused on improving the phase stability and mechanical properties of yttria-stabilized zirconia (YSZ), commonly utilized in gas turbine engine thermal barrier coatings, by incorporating Gd2O3, Er2O3, and TiO2. The addition of 3-valent rare earth elements to YSZ can reduce thermal conductivity and enhance phase stability while adding the 4-valent element TiO2 can improve phase stability and mechanical properties. Sintered specimens were prepared with hot-press equipment. Phase analysis was conducted with X-ray diffraction (XRD), and mechanical properties were assessed with Vickers hardness equipment. The research results revealed that, except for Z10YGE10T, most compositions predominantly exhibited the t-phase. Increasing the content of 3-valent rare earth oxides resulted in a decrease in the monoclinic phase and an increase in the tetragonal phase. In addition, the t(400) angle decreased while the t(004) angle increased. The addition of 10 mol% of 3-valent rare-earth oxides discarded the t-phase and led to the complete development of the c-phase. Adding 10 mol% TiO2 increased hardness than YSZ.

키워드

과제정보

본 논문은 산업통상자원부 소재부품기술개발-전략핵심소재 자립화 기술 개발 사업(#20009895)의 연구자원으로 수행되었습니다.

참고문헌

  1. N. P. Padture, M. Gell and E. H. Jordan: Science, 296 (2002) 280.
  2. X. Ren, M. Zhao, J. Feng and W. Pan: J. Alloys Compd., 750 (2018) 189.
  3. R. A. Miller: Surf. Coat. Technol., 30 (1987) 1.
  4. X. Q. Cao, R. Vassen and D. Stoever: J. Eur. Ceram. Soc., 24 (2004) 1. https://doi.org/10.23296/MINMUN.2004.24.281
  5. S. Robert and C. M. Spuckler: Mater. Sci. Eng. A, 245 (1998) 150.
  6. F. Cernuschi, P. Bianchi, M. Leoni and P. Scardi: J. Therm. Spray Technol., 8 (1999) 102.
  7. E. V. Dudnik, S. N. Lakiza, I. N. Hrechanyuk, A. K. Ruban, V. P. Redko, I. O. Marek, V. B. Shmibelsky, A. A. Makudera and N. I. Hrechanyuk: Powder Metall. Met. Ceram., 59 (2020) 179.
  8. H. Miyazaki: Int. J. Appl. Ceram. Technol., 5 (2008) 490.
  9. Y. Wang and C. Zhou: Ceram. Int., 42 (2016) 13047.
  10. H. Herman and N. R. Shankar: Mater. Sci. Eng. C, 88 (1987) 69.
  11. G. Witz, V. Shklover, W. Steurer, S. Bachegowda and H.-P. Bossmann: J. Am. Ceram. Soc., 90 (2007) 2935.
  12. D. Zhu, J. A. Nesbitt, C. A. Barrett, T. R. McCue and R. A. Miller: J. Therm. Spray Technol., 13 (2004) 84.
  13. L. Jin, C. Jiang, H. Xu, B. Zhang, C. Zhou and H. Peng: IInt. J. Lightweight Mater. Manuf., 2 (2019) 261.
  14. H. Tian, L. Wei and L. M. He: Coatings, 13 (2023) 10.
  15. J. Chevalier, L. Gremillard, A. V. Virkar and D. R. Clarke: J. Am. Ceram. Soc., 92 (2009) 1901.
  16. Y. S Choi, G. W. Lee, C. W. Jeon, S. Nahm and Y. S. Oh: J. Surf. Sci. Eng., 55 (2022) 368.
  17. J.-F. Bisson, D. Fournier, M. Poulain, O. Lavigne and R. Mevrel: J. Am. Ceram. Soc., 83 (2000) 1993.
  18. D. R. Clarke and C. G. Levi: Annu. Rev. Mater. Res., 33 (2003) 383.
  19. H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura and M. Mori: Solid State Ionics, 176 (2005) 613.
  20. H. G. Scott: J. Mater. Sci., 10 (1975) 1527.
  21. Q. Wang, L. Guo, Z. Yan and F. Ye: Coatings, 8 (2018) 10.
  22. M. N. Rahaman, J. R. Gross, R. E. Dutton and H. Wang: Acta Mater., 54 (2006) 1615.
  23. K. A. Khor and J. Yang: Mater. Lett., 31(1997) 23.
  24. C. Viazzi, J.-P. Bonino, F. Ansart and A. Barnabe: J. Alloys Compd., 452 (2008) 377.
  25. Y. Sun, J. Luo and J. Zhu: Eng. Fract. Mech., 233 (2020) 107077.
  26. J. A. Krogstad: Ph. D. Dissertation, Phase Stability of Zirconia-Based Thermal Barrier Coatings, University of California, Santa Barbara, (2012) 304.
  27. M. Zhao, X. Ren, J. Yang and W. Pan: Ceram. Int., 42 (2016) 501.
  28. R. A. Miller, J. L. Smialek and R. G. Garlick: Adv. Ceram., 3 (1981) 241.
  29. E. H. Kisi and C. J. Howard:. Key Eng. Mater., 153-154 (1998) 1.
  30. T. A. Schaedler, O. Fabrichnaya and C. G. Levi: J. Eur. Ceram. Soc., 28 (2008) 2509.
  31. T. A. Schaedler: Ph. D. Dissertation, Phase evolution in the yttrium oxide-titanium dioxide-zirconium oxide system and effects on ionic conductivity and toughness, University of California, Santa Barbara (2006).
  32. P. Luo, J. Zhang, Z. You, X. Ran, Y. Liu, S. Li and S. Li: Mater. Res. Express, 6 (2019) 15.