Acknowledgement
This research was supported by a grant from the 2023-2024 Research funds of Andong National University, and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008458, HRD Program for Industrial Innovation).
References
- R. R. Maller, Passivation of stainless steel, Trends in Food Science & Technology, 9, 28 (1998). Doi: https://doi.org/10.1016/S0924-2244(97)00004-6
- A. H. Tuthill and R. E. Avery, Specifying stainless steel surface treatments, Advanced Materials & Processes, 142, 34 (1992).
- K. Sotoodeh, Analysis and improvement of material selection for process piping system in offshore industry, American Journal of Mechanical Engineering, 6, 17 (2018). Doi: https://doi.org/10.12691/ajme-6-1-3
- E. Messinese, L. Casanova, L. Paterlini, F. Capelli, F. Bolzoni, M. Ormellese, A. Brenna, A comprehensive investigation on the effects of surface finishing on the resistance of stainless steel to localized corrosion, Metals, 12, 1751 (2022). Doi: https://doi.org/10.3390/met12101751
- D. Kim, W. Chung, B. H. Shin, Effects of the volume fraction of the secondary phase after solution annealing on electrochemical properties of super duplex stainless steel UNS S32750, Metals, 13, 957 (2023). Doi: https://doi.org/10.3390/met13050957
- Y. Das, J. Liu, H. Ehteshami, J. Odqvist, N. H. Pettersson, S. Wessman, S. King, P. Hedstrom, Quantitative nanostructure and hardness evolution in duplex stainless steels: under real low-temperature service conditions, Metallurgical and Materials Transactions A, 53, 723 (2022). Doi: https://doi.org/10.1007/s11661-021-06547-4
- G. Kim, S. H. Shin, B. Hwang, Machine learning approach for prediction of hydrogen environment embrittlement in austenitic steels, Materials Research and Technology, 19, 2794 (2022). Doi: https://doi.org/10.1016/j.jmrt.2022.06.046
- S. Y. Won, G. B. Kim, Y. R. Yoo, S. H. Choi, and Y. S. Kim, Intergranular corrosion behavior of medium and low carbon austenitic stainless steel, Corrosion Science and Technology, 21, 230 (2022). Doi: https://doi.org/10.14773/cst.2022.21.3.230
- N. L. Isern, H. L. Luque, I. L. Jimenez, M. V. Biezma, Identification of sigma and chi phases in duplex stainless steels, Materials Characterization, 112, 20 (2016). Doi: https://doi.org/10.1016/j.matchar.2015.12.004
- K. H. Lo, C. H. Shek, J. K. L. Lai, Recent developments in stainless steels, Materials Science and Engineering R, 65, 39 (2009). Doi: https://doi.org/10.1016/j.mser.2009.03.001
- A. F. Padilha, P. R. Rios, Decomposition of Austenite in Austenitic Stainless Steels, ISIJ International, 42, 325 (2002). Doi: https://doi.org/10.2355/isijinternational.42.325
- T. H Chen, J. R Yang, Effects of solution treatment and continuous cooling on σ-phase precipitation in a 2205 duplex stainless steel, Materials Science and Engineering A, 311, 28 (2001). Doi: https://doi.org/10.1016/s0921-5093(01)00911-x
- L. Duprez, B. C. D. Cooman, N. Akdut, Redistribution of the substitutional elements during σ and χ phase formation in a duplex stainless steel, Steel Research, 72, 311 (2001). Doi: https://doi.org/10.1002/srin.200100123
- D. M. E. Villanueva, F. C. P. Junior, R. L. Plaut, A. F. Padilha, Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, super ferritic and duplex, Materials Science and Technology, 22, 1098 (2006). Doi: https://doi.org/10.1179/174328406x109230
- D. Wasnik, G. K. Dey, V. Kain, I. Samajdar, Precipitation stages in a 316L austenitic stainless steel, Scripta Materialia, 49, 135 (2003). Doi: https://doi.org/10.1016/s1359-6462(03)00220-3
- M. Schwind, J. Kallqvist, J. O. Nilsson, J. Agren, H. O. Andren, σ-phase precipitation in stabilized austenitic stainless steels, Acta Materialia, 48, 2473 (2000). Doi: https://doi.org/10.1016/s1359-6454(00)00069-0
- H. U. Hong, B. S. Rho, S. W. Nam, Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel, Materials Science and Engineering A, 318, 285 (2001). Doi: https://doi.org/10.1016/s0921-5093(01)01254-0
- S. Zhang, H. Li, Z. Jiang, B. Zhang, Z. Li, J. Wu, S. Fan, H. Feng, H. Zhu, Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of super austenitic stainless steel S32654, Materials Characterization, 152, 141 (2019). Doi: https://doi.org/10.1016/j.matchar.2019.04.010
- J. Xiao, Y. Zhang, W. Zhang, A. Zhao, Precipitation mechanism of σ phase in S32654 super austenitic stainless steel, Materials Letter, 349, 134834 (2023). Doi: https://doi.org/10.1016/j.matlet.2023.134834
- J. K. Kim, Y. H. Kim, J. S. Lee, K. Y. Kim, Effect of chromium content on intergranular corrosion and precipitation of Ti-stabilized ferritic stainless steels, Corrosion Science, 52, 1847 (2010). Doi: https://doi.org/10.1016/j.corsci.2010.01.037
- Y. W. Chai, K. Kato, C. Yabu, S. Ishikawa, Y. Kimura, Disconnections and Laves (C14) precipitation in high-Cr ferritic stainless steels, Acta Materialia, 198, 230 (2020). Doi: https://doi.org/10.1016/j.actamat.2020.08.006
- M. P. Sello, W. E. Stumpf, Laves phase precipitation and its transformation kinetics in the ferritic stainless steel type AISI 441, Materials Science and Engineering A, 528, 1840 (2011). Doi: https://doi.org/10.1016/j.msea.2010.09.090
- H. P. Qu, Y. P. Lang, H. T. Chen, F. Rong, X. F. Kang, C. Q. Yang, H. B. Qin, The effect of precipitation on microstructure, mechanic properties and corrosion resistance of two UNS S44660 ferritic stainless steels, Materials Science and Engineering A, 534, 436 (2012). Doi: https://doi.org/10.1016/j.msea.2011.11.091
- D. H. Kim, K. C. Kim, J. H. Park, W. Chung, B. H. Shin, Microstructure and corrosion performance of high-entropy alloy and austenite and super duplex stainless steels in 3.5% NaCl solution, International Journal of Electrochemical Science, 18, 100074 (2023). Doi: https://doi.org/10.1016/j.ijoes.2023.100074
- K. Chan, S. Tjong, Effect of secondary phase precipitation on the corrosion behavior of duplex stainless steels, Materials, 7, 5268 (2014). Doi: https://doi.org/10.3390/ma7075268
- H. Sieurin, R. Sandstrom, Sigma phase precipitation in duplex stainless steel 2205, Materials Science and Engineering A, 444, 271 (2007). Doi: https://doi.org/10.1016/j.msea.2006.08.107
- C. S. Huang, C. C. Shih, Effects of nitrogen and high temperature aging on σ phase precipitation of duplex stainless steel, Materials Science and Engineering A, 402, 66 (2005). Doi: https://doi.org/10.1016/j.msea.2005.03.111
- A. J. Ramirez, J. C. Lippold, S. D. Brandi , The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels, Metallurgical and Materials Transactions A, 34, 157 (2003). Doi: https://doi.org/10.1007/s11661-003-0304-9
- X. Huang, D. Wang, Y. Yang, Effect of precipitation on intergranular corrosion resistance of 430 ferritic stainless steel, Journal of Iron and Steel Research International, 22, 1062 (2015). Doi: https://doi.org/10.1016/s1006-706x(15)30113-8
- S. Zhang, H. Li, Z. Jiang, Z. Li, J. Wu, B. Zhang, F. Duan, H. Feng, H. Zhu, Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654, Journal of Materials Science & Technology, 42, 143 (2020). Doi: https://doi.org/10.1016/j.jmst.2019.10.011
- K. T. Kim, S. B. Um, Y. S. Kim, Effect of heat treatment on the corrosion properties of seamless 304L stainless steel pipe, Corrosion Science and Technology, 16, 305 (2017). Doi: https://doi.org/10.14773/cst.2017.16.6.305
- Y. T. Jeon, Y. S. Kim, Y. S. Park, W. S. Ryu, J, H. Hong, Influences of aging heat treatment on the microstructure , mechanical properties , and corrosion resistance of Fe - Cr - Mn type stainless steels, Corrosion Science and Technology, 30, 61 (2001).
- Z. Y. Liu, F. Gao, L. Z. Jiang, G. D. Wang, The correlation between yielding behavior and precipitation in ultra purified ferritic stainless steels, Materials Science and Engineering A, 527, 3800 (2010). Doi: https://doi.org/10.1016/j.msea.2010.03.047
- Y. S. Kim, D. B. Mitton, R. M. Latanision, Corrosion resistance of stainless steels in chloride containing supercritical water oxidation system, Korean Journal of Chemical Engineering, 17, 58 (2000). Doi: https://doi.org/10.1007/bf02789254
- K. G. Kim, H. Y. Chang, Y. S. Kim, Effect of thermal history on pitting corrosion of high nitrogen and low molybdenum stainless steels, Corrosion Science and Technology, 2, 2, 75 (2003).
- ASTM G48, Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution, ASTM (2003).
- A. D. Warren, I. J. Griffiths, P. E. J. Flewitt, Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel, Journal of Materials Science, 53, 6183 (2018). Doi: https://doi.org/10.1007/s10853-017-1748-4
- D. M. Escriba, E. M. Morris, R. L. Plaut, A. F. Padilha, Chi-phase precipitation in a duplex stainless steel, Materials Characterization, 60, 1214 (2009). Doi: https://doi.org/10.1016/j.matchar.2009.04.013