DOI QR코드

DOI QR Code

Comparison of Heat Resistance of Bacillus subtilis, Geobacillus stearothermophilus, and Bacillus atrophaeus spores

Bacillus subtilis, Geobacillus stearothermophilus 및 Bacillus atrophaeus 포자의 열 저항성 비교

  • Eun-Sun Jeong (Department of Food Science and Technology, Sunchon National University) ;
  • Ju-Hee Nam (Department of Food Science and Technology, Sunchon National University) ;
  • Jung-Beom Kim (Department of Food Science and Technology, Sunchon National University)
  • Received : 2023.09.09
  • Accepted : 2023.10.06
  • Published : 2023.10.30

Abstract

We analyzed the heat resistance of non-pathogenic Bacillus atrophaeus, Bacillus subtilis, and Geobacillus stearothermophilus spores which exhibit strong heat resistance and evaluated the possibility of using them to determine direct sterilization when manufacturing retort foods. The D121-values of B. subtilis, G. stearothermophilus, and B. atrophaeus spores were 2.9±0.1 min, 4.3±0.1 min, and 3.7±0.1 min, respectively. The Z-values of B. subtilis, G. stearothermophilus, and B. atrophaeus spores were 43.0±1.4℃, 25.0±1.6℃, and 35.8±1.4℃, respectively. The D121-values of B. subtilis, G. stearothermophilus, and B. atrophaeus spores were all higher than that of Clostridium botulinum spores used to confirm retort food sterilization. Considering these results, B. subtilis, G. stearothermophilus, and B. atrophaeus spores can be used instead of the pathogenic spore-forming bacteria C. botulinum when sterilizing retort food. In addition, sterilization can be confirmed in 2 to 3 days, a shorter time than the 13 days required for existing bacterial growth experiments based on the Korean food code.

본 연구에서는 강한 내열성을 가지는 비병원성 Bacillus atrophaeus, Bacillus subtilis, Geobacillus stearothermophilus 포자의 열 저항성을 분석하여 레토르트 식품 제조 시 직접적인 멸균 여부 판정에 사용 가능성을 평가하고자 하였다. B. subtilis 포자의 D121-value는 2.9±0.1분이었으며, Zvalue는 43.0±1.4℃로 나타났다. G. stearothermophilus 포자의 D121-value는 4.3±0.1분이었으며, Z-value는 25.0±1.6℃로 나타났다. B. atrophaeus 포자의 D121-value는 3.7±0.1분이었으며, Z-value는 35.8±1.4℃로 나타났다. B. subtilis, G stearothermophilus와 B. atrophaeus 포자의 D121-value는 모두 레토르트 식품 멸균 확인에 사용되는 C. botulinum 포자의 D121-value 보다 높은 값을 나타내었다. 이러한 결과를 종합하여 볼 때 레토르트 식품 멸균 시 병원성 포자형성균인 C. botulinum 대신 B. subtilis, G. stearothermophilus, B. atrophaeus 포자를 사용할 수 있을 것으로 판단된다. 또한 기존 세균발육 실험에 소요되는 13일보다 단시간인 2-3일에 멸균 여부를 확인할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2022년도 환경부의 재원으로 한국환경산업기술원(KEITI)의 지원을 받아 "병원 규모에 최적화된 감염 우려 의료폐기물 멸균기 개발"을 수행한 연구결과입니다(No. 2021003350003).

References

  1. Kim, Y.W., Trends in markets for home meal replacamnets. Food Sci. Ind., 50, 57-66 (2017). 
  2. Kim, T.K., Choi, H.D., Kim, Y.B., Jeon, K.H., Choi, Y.S., Home meal replacement status and technology Trends. Food Ind. Nut., 22, 1-7 (2017). 
  3. Korea Agro-Fisheries & Food Trade Corporation (KAF-FTC), Major statistics of food and restaurant industry in 2022, KAFFTC, Naju, Korea (2022). 
  4. Ministry of Food and Drug Safety (MFDS), Food code, MFDS, Cheongju, Korea (2023). 
  5. Ministry of Food and Drug Safety (MFDS), Guidelines for the recognition of equivalence in sterilization heat treatment of meat, eggs, and dairy products, MFDS, Cheongju, Korea (2018). 
  6. Berendsen, E.M., Zwietering, M.H., Kuipers, O.P., Wells-Bennik, M.H., Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties. Food Microbiol., 45, 18-25 (2015).  https://doi.org/10.1016/j.fm.2014.04.009
  7. Hassan, H.F., Ramaswamy, H.S., Heat resistance of G. stearothermophilus and C. sporogenes in carrot and meat alginate purees. J. Food. Process. Preserv., 35, 376-385 (2011).  https://doi.org/10.1111/j.1745-4549.2011.00519.x
  8. Chung, G.T., Kang, D.H., Yoo, C.K., Choi, J.H., Seong, W.K., The first outbreak of botulism in Korea. Korean J. Clin. Microbiol., 160-163 (2003). 
  9. Lee, J.H., Song, G.C., Lee, K.T., Quality differences of retorted Samgyetangs as affected by F 0-value levels. Korean J. Food Preserv., 23, 848-858 (2016).  https://doi.org/10.11002/kjfp.2016.23.6.848
  10. Coonrod, J.D., Leadley, P.J., Eickhoff, T.C., Antibiotic susceptibility of Bacillus species. J. Infect. Dis., 123, 102-105 (1971).  https://doi.org/10.1093/infdis/123.1.102
  11. Park, W.C., Lee, M.A., Sung, I.W., Phosphorus removal from advanced wastewater treatment process using PAC. J. Korean. Soc. Environ. Eng., 36, 96-102 (2014).  https://doi.org/10.4491/KSEE.2014.36.2.96
  12. Yoon, Y.H., Nam, S.H., Joo, J.C., Ahn, H.S., Photocatalytic disinfection of indoor suspended microorganisms (Escherichia coli and Bacillus subtilis spore) with ultraviolet light. JKAIS, 15, 1204-1210 (2014).  https://doi.org/10.5762/KAIS.2014.15.2.1204
  13. Park, L.Y., Lee, S.H., Effect of chitosan on shelf life of cooked rice contaminated artificially with Bacillus sp. J. Korean. Soc. Food. Sci. Nutr., 36, 1589-1595 (2007).  https://doi.org/10.3746/jkfn.2007.36.12.1589
  14. Kim, H.I., Jeon, D.H., Yoon, H.J., Kwak, I.S., Eom, M.O., Sung, J.H., Park, N.Y., Won, S.A., Bae, S.Y., Lee, Y.J., Kim, S.H., Establishing test method of sporicidal activity of commercial sterilants. J. Food Hyg. Saf., 24, 312-317 (2009). 
  15. Schaeffer, A.B., Fulton, M.D.A., Simplified method of staining endospores. Science, 77, 194 (1933). 
  16. Chan, S.W., Lee, S.Y., Yoon, L.Y., Kim, K.B.W.R., Lee, C.J., Kwak, J.H., Kim, M.J., Kim, D.H., Jung, S.A., Kim, H.J., Ahn, D.H., Effect of physicochemical treatment on growth inhibition of hanseniaspora uvarum Y1 from yogurt. J. Korean Soc. Food Sci. Nutr., 40, 1781-1786 (2011).  https://doi.org/10.3746/jkfn.2011.40.12.1781
  17. Lee, T.K., Roh, M.H., Identification and physiological characteristics of microorganism isolated from spoiled sweetened adzuki ann. J. Korean. Soc. Food. Sci. Nutr., 35, 1456-1460 (2006).  https://doi.org/10.3746/jkfn.2006.35.10.1456
  18. Lee, P.M., Jung, M.G., Park, J.H., Song, C.G.. Investigation of bioaerosol in Arcade-type traditional market. KSW, 16, 1-7 (2021).  https://doi.org/10.21097/ksw.2021.11.16.4.1
  19. Lee, H.E., Park, H.B., Characteristics and Market Trends of Natural Plant Protection Agent. World Agriculture. 176, 1-14 (2015). 
  20. National Institute of Environmental Research (NIER), Waste process test standards, NIER, Incheon, Korea (2023). 
  21. Hwang, C.S., Kim, H.H., Oh, B.C., Kim, Y.S., Shin, D.H., Identification and characteristics of microorganism isolated from spoiled red bean paste. Food Sci. Biotechnol., 13, 758-761 (2004). 
  22. Fraiha, M., Ferraz, A.C.D.O., Biagi, J.D., Determination of thermobacteriological parameters and size of Bacillus stearothermophilus ATCC 7953 spores. Food Sci. Technol., 30, 1041-1045 (2010).  https://doi.org/10.1590/S0101-20612010000400032
  23. Kempf, M.J., Schubert, W.W., Beaudet, R.A., Determination of lethality rate constants and D-values for Bacillus atrophaeus (ATCC 9372) spores exposed to dry heat from 115℃ to 170℃. Astrobiology, 8, 1169-1182 (2008).  https://doi.org/10.1089/ast.2007.0208
  24. Kumars, M., Dunders, G., Morein, N., Medical Microbiology II: Sterilization, Laboratory Diagnosis and Immunological Response, 2th ed, Cambridge Stanford Books, Broken Arrow, OK, USA (2020). 
  25. Gibbons, H.S., Broomall, S.M., McNew, L.A., Daligault, H., Chapman, C., Bruce, D., Karavis, M., Krepps, M., McGregor, P.A., Hong, C., Park, K.H., Akmal, A., Feldman, A., Lin, J.S., Chang, W.E., Higgs, B.W., Demirev, P., Lindquist, J., Liem, A., Fochler, E., Read, T.D., Tapia, R., Johnson, S., Bishop-Lilly, K.A., Detter, C., Han, C., Sozhamannan, S., Rosenzweig, C.N., Skowronski, E.W., Genomic signatures of strain selection and enhancement in Bacillus atrophaeus var. globigii, a historical biowarfare simulant. PLoS One, 6, e17836 (2011). 
  26. Guo, Y., Huang, E., Yang, X., Zhang, L., Yousef, A.E., Zhong, J., Isolation and characterization of a Bacillus atrophaeus strain and its potential use in food preservation. Food Control, 60, 511-518 (2016).  https://doi.org/10.1016/j.foodcont.2015.08.029
  27. Food and Drug Administration (FDA), Biological Indicator (BI) Premarket Notification [510(k)] Submissions, FDA, Rockville, MD, USA (2007). 
  28. Hong, J.T., Treat arthritis with bee venom. The Sci. Technol., 2, 46-47 (2005).