DOI QR코드

DOI QR Code

Effect of supplement of SCM in culture medium for in vitro development of bovine in vitro fertilized oocytes

  • Received : 2023.07.31
  • Accepted : 2023.08.25
  • Published : 2023.09.30

Abstract

Background: The successful production of superior or transgenic offspring from in vitro produced embryos in cattle relies heavily on the quality of blastocyst stage embryos. In order to enhance the developmental competency of these embryos, a novel culture method was devised. Methods: This study utilized stem cell culture medium (SCM) from hESCs as a supplement within the culture medium for bovine in vitro produced embryos. To gauge the efficacy of this approach, in vitro fertilized embryos were subjected to culture in CR1aa medium enriched with one of three supplements: 0.3% BSA, 10% FBS, or 10% SCM. Results: The blastocyst development and hatching rates of one-cell zygotes cultured in CR1aa medium supplemented with SCM (23.9% and 10.2%) surpassed those cultured in CR1aa medium supplemented with BSA (9.3% and 0.0%) or FBS (3.1% and 0.0%) (p < 0.05). Furthermore, post-zygotic gene activation, cleaved embryos cultured in CR1aa medium supplemented with SCM (57.8% and 34.5%) exhibited notably higher rates (p < 0.05) compared to those cultured with BSA (12.9% and 0.0%) or FBS (45.7% and 22.5%) supplementation. Furthermore, the microinjection of SCM into the cytoplasm or pronucleus of fertilized zygotes resulted in elevated blastocyst development and hatching rates, particularly when the microinjected embryos were subsequently cultured in CR1aa medium supplemented with SCM from the 8-cell embryo stage onwards (p < 0.05), in contrast to those cultured with FBS supplementation. Conclusions: In conclusion, this study conclusively demonstrated that the incorporation of SCM into the culture medium significantly enhances the developmental progress of preimplantation embryos.

Keywords

Acknowledgement

SCM were provided by Professor Hyung-Min Chung in Konkuk University of Republic of Korea.

References

  1. Abe H and Hoshi H. 2003. Evaluation of bovine embryos produced in high performance serum-free media. J. Reprod. Dev. 49:193-202.  https://doi.org/10.1262/jrd.49.193
  2. Arat S, Caputcu AT, Cevik M, Akkoc T, Cetinkaya G, Bagis H. 2016. Effect of growth factors on oocyte maturation and allocations of inner cell mass and trophectoderm cells of cloned bovine embryos. Zygote 24:554-562.  https://doi.org/10.1017/S0967199415000519
  3. Bendall SC, Hughes C, Campbell JL, Stewart MH, Pittock P, Liu S, Bonneil E, Thibault P, Bhatia M, Lajoie GA. 2009. An enhanced mass spectrometry approach reveals human embryonic stem cell growth factors in culture. Mol. Cell. Proteomics 8:421-432.  https://doi.org/10.1074/mcp.M800190-MCP200
  4. Bowen RA, Reed ML, Schnieke A, Seidel GE Jr, Stacey A, Thomas WK, Kajikawa O. 1994. Transgenic cattle resulting from biopsied embryos: expression of c-ski in a transgenic calf. Biol. Reprod. 50:664-668.  https://doi.org/10.1095/biolreprod50.3.664
  5. Chan AW, Homan EJ, Ballou LU, Burns JC, Bremel RD. 1998. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc. Natl. Acad. Sci. U. S. A. 95:14028-14033.  https://doi.org/10.1073/pnas.95.24.14028
  6. Choe CY, Son JK, Cho SR, Kang DW, Yeon SH, Choi SH, Choi SH, Kim NT, Kim JB, Jung YS, Kim SJ, Jung JW, Bok NH, Yoo YH, Son DS. 2010. Effects of pregnant rate after embryo transfer in oxygen consumption of embryos in Korean cattle. J. Emb. Trans. 25:145-148. 
  7. Han YM, Park JS, Lee CS, Lee JH, Kim SJ, Choi JT, Lee HT, Chung BH, Chung KS, Shin ST, Kim YH, Lee KS, Lee KK. 1996. Factors affecting in vivo viability of DNA-injected bovine blastocysts produced in vitro. Theriogenology 46:769-778.  https://doi.org/10.1016/S0093-691X(96)00235-X
  8. Kim SG and Park HD. 2019. Effect of addition of ESCM and ESM during in vitro maturation on in vitro development of porcine follicular oocytes. J. Anim. Reprod. Biotechnol. 34:205-211.  https://doi.org/10.12750/JARB.34.3.205
  9. Larson RC, Ignotz GG, Currie WB. 1992. Transforming growth factor beta and basic fibroblast growth factor synergistically promote early bovine embryo development during the fourth cell cycle. Mol. Reprod. Dev. 33:432-435.  https://doi.org/10.1002/mrd.1080330409
  10. Lavitrano M, Camaioni A, Fazio VM, Dolci S, Farace MG, Spadafora C. 1989. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57:717-723.  https://doi.org/10.1016/0092-8674(89)90787-3
  11. Lee KS, Kim EY, Jeon K, Cho SG, Han YJ, Yang BC, Lee SS, Ko MS, Riu KJ, Lee HT, Park SP. 2011. 3,4-Dihydroxyflavone acts as an antioxidant and antiapoptotic agent to support bovine embryo development in vitro. J. Reprod. Dev. 57:127-134.  https://doi.org/10.1262/jrd.10-029A
  12. Lee SH. 2020. Effects of human endothelial progenitor cell and its conditioned medium on oocyte development and subsequent embryo development. Int. J. Mol. Sci. 21:7983. 
  13. Lima PF, Oliveira MA, Santos MH, Reichenbach HD, Weppert M, Paula-Lopes FF, Neto CC, Goncalves PB. 2006. Effect of retinoids and growth factor on in vitro bovine embryos produced under chemically defined conditions. Anim. Reprod. Sci. 95:184-192.  https://doi.org/10.1016/j.anireprosci.2005.08.013
  14. Miraki S, Mokarizadeh A, Banafshi O, Assadollahi V, Abdi M, Roshani D, Fathi F. 2017. Embryonic stem cell conditioned medium supports in vitro maturation of mouse oocytes. Avicenna J. Med. Biotechnol. 9:114-119. 
  15. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM. 1982. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611-615.  https://doi.org/10.1038/300611a0
  16. Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SE, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CB, Mileham A, Telugu BP, Oatley JM. 2017. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci. Rep. 7:40176. 
  17. Petersen B. 2017. Basics of genome editing technology and its application in livestock species. Reprod. Domest. Anim. 52 Suppl 3:4-13.  https://doi.org/10.1111/rda.13012
  18. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC. 2015. Genome edited sheep and cattle. Transgenic Res. 24:147-153.  https://doi.org/10.1007/s11248-014-9832-x
  19. Ramos-Deus P, Santos Nascimento P, Vieira JIT, Chaves MS, Albuquerque KA, Ferreira-Silva JC, Grazia JGV, Santos Filho AS, Batista AM, Teixeira VW, Oliveira MAL. 2020. Application of platelet-rich plasma in the in vitro production of bovine embryos. Trop. Anim. Health Prod. 52:2931-2936.  https://doi.org/10.1007/s11250-020-02307-5
  20. Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl JM, Kuroiwa Y. 2007. Production of cattle lacking prion protein. Nat. Biotechnol. 25:132-138.  https://doi.org/10.1038/nbt1271
  21. Robl JM, Wang Z, Kasinathan P, Kuroiwa Y. 2007. Transgenic animal production and animal biotechnology. Theriogenology 67:127-133.  https://doi.org/10.1016/j.theriogenology.2006.09.034
  22. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130-2133.  https://doi.org/10.1126/science.278.5346.2130
  23. Su F, Wang Y, Liu G, Ru K, Liu X, Yu Y, Liu J, Wu Y, Quan F, Guo Z, Zhang Y. 2016. Generation of transgenic cattle expressing human β-defensin 3 as an approach to reducing susceptibility to Mycobacterium bovis infection. FEBS J. 283:776-790.  https://doi.org/10.1111/febs.13641
  24. Uhm SJ, Yang JS, Lee SM, Joe SY, Heo YT, Xu YN, Koo BC, Cheong KS, Kim KJ, Kim JT, Kim NH, Ko DH. 2013. Production of transgenic cattle by non-surgical embryo transfer. J. Emb. Trans. 28:169-175.  https://doi.org/10.12750/JET.2013.28.3.169
  25. Voelkel SA and Hu YX. 1992. Effect of gas atmosphere on the development of one-cell bovine embryos in two culture systems. Theriogenology 37:1117-1131.  https://doi.org/10.1016/0093-691X(92)90109-5
  26. Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X, Chen X, Yang Y, Jiang Y, Shi L, Tian X, Wang Y, Ma B, Huang X, Qu L, Chen Y. 2015. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci. Rep. 5:13878. 
  27. Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson DF, Fahrenkrug SC, Wells DN, Laible G. 2018. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Sci. Rep. 8:7661. 
  28. Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y. 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 112:E1530-E1539.  https://doi.org/10.1073/pnas.1421587112
  29. Xu YN, Uhm SJ, Koo BC, Kwon MS, Roh JY, Yang JS, Choi HY, Heo YT, Cui XS, Yoon JH, Ko DH, Kim T, Kim NH. 2013. Production of transgenic Korean native cattle expressing enhanced green fluorescent protein using a FIV-based lentiviral vector injected into MII oocytes. J. Genet. Genomics 40: 37-43.  https://doi.org/10.1016/j.jgg.2012.11.001
  30. Yang B, Wang J, Tang B, Liu Y, Guo C, Yang P, Yu T, Li R, Zhao J, Zhang L, Dai Y, Li N. 2011. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PLoS One 6:e17593. 
  31. Yang HM, Choi JJ, Kim HN, Yang SJ, Park SJ, Kang C, Chung HM, Lee MR, Kim SJ, Moon SH. 2019. Reconstituting human cutaneous regeneration in humanized mice under endothelial cell therapy. J. Invest. Dermatol. 139:692-701. https://doi.org/10.1016/j.jid.2018.08.031