• 제목/요약/키워드: in vitro fertilized zygote

검색결과 5건 처리시간 0.018초

Sex Linked Developmental Rate Differences in Murrah Buffalo (Bubalus bubalis) Embryos Fertilized and Cultured In Vitro

  • Sood, S.K.;Chauhan, M.S.;Tomer, O.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권1호
    • /
    • pp.15-21
    • /
    • 1999
  • The aim of the present study was to determine the effect of paternal sex chromosome on early development of buffalo embryos fertilized and cultured in vitro. Embryos were produced in vitro from abattoir derived buffalo oocytes. The cleaved embryos were cocultured with buffalo oviductal epithelial cells and evaluated on day 7 under the phase contrast microscope to classify development. The embryos which reached the morula/blastocyst stage were fast developing, the embryos which were at 16-32 cell stage were medium developing and the embryos below 16 cell stage were slow developing. The embryos which showed some fragmentation in the blastomeres or degenerated blastomeres, were degenerating. Sex of emberyos (n=159) was determined using PCR for amplification of a male specific BRY. 1 (301 bp) and a buffalo specific satellite DNA (216 bp) fragments. The results thus obtained show that 1) X and Y chromosome bearing sperms fertilize oocytes to give almost equal numbers of cleaved XX and XY embryos, 2) male embryos develop faster than female embryos to reach advanced stage and 3) degeneration of buffalo embryos is not linked with the paternal sex chromosome. We suggest that faster development of males is due to differential processing of X and Y chromosome within the zygote for its activation and / or differential expression of genes on paternal sex chromosome sex chromosome during development of buffalo embryos fertilized and cultured in vitro which may be attributed to a combination of genetic and environmental factors.

Effect of supplement of SCM in culture medium for in vitro development of bovine in vitro fertilized oocytes

  • Sang Jun Uhm
    • 한국동물생명공학회지
    • /
    • 제38권3호
    • /
    • pp.143-150
    • /
    • 2023
  • Background: The successful production of superior or transgenic offspring from in vitro produced embryos in cattle relies heavily on the quality of blastocyst stage embryos. In order to enhance the developmental competency of these embryos, a novel culture method was devised. Methods: This study utilized stem cell culture medium (SCM) from hESCs as a supplement within the culture medium for bovine in vitro produced embryos. To gauge the efficacy of this approach, in vitro fertilized embryos were subjected to culture in CR1aa medium enriched with one of three supplements: 0.3% BSA, 10% FBS, or 10% SCM. Results: The blastocyst development and hatching rates of one-cell zygotes cultured in CR1aa medium supplemented with SCM (23.9% and 10.2%) surpassed those cultured in CR1aa medium supplemented with BSA (9.3% and 0.0%) or FBS (3.1% and 0.0%) (p < 0.05). Furthermore, post-zygotic gene activation, cleaved embryos cultured in CR1aa medium supplemented with SCM (57.8% and 34.5%) exhibited notably higher rates (p < 0.05) compared to those cultured with BSA (12.9% and 0.0%) or FBS (45.7% and 22.5%) supplementation. Furthermore, the microinjection of SCM into the cytoplasm or pronucleus of fertilized zygotes resulted in elevated blastocyst development and hatching rates, particularly when the microinjected embryos were subsequently cultured in CR1aa medium supplemented with SCM from the 8-cell embryo stage onwards (p < 0.05), in contrast to those cultured with FBS supplementation. Conclusions: In conclusion, this study conclusively demonstrated that the incorporation of SCM into the culture medium significantly enhances the developmental progress of preimplantation embryos.

Effect of Essential and Nonessential Amino Acids in North Carolina State University (NCSU)-23 Medium on Development of Porcine In vitro Fertilized Embryos

  • Hashem, Md. Abul;Bhandari, Dilip P.;Hossein, Mohammad Shamim;Jeong, Yeon Woo;Kim, Sue;Kim, Ji-Hye;Koo, Ok-Jae;Park, Seon Mi;Lee, Eu Gine;Park, Sun Woo;Kang, Sung Keun;Lee, Byeong Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.693-700
    • /
    • 2007
  • The present study was conducted to examine the effect of different levels of essential and nonessential amino acid in NCSU-23 medium on the in vitro-produced porcine embryo as it develops from the zygote to the blastocyst stage. Four experiments were performed, each with a completely randomized design involving 5 to 8 replications of treatments. In order to know the effect of nonessential amino acids in NCSU-23 medium, 0, 5, 10 and $20{\mu}/ml$ MEM were supplemented there to, (Exp. 1) and the medium was supplemented with same level of essential amino acids (Exp. 2). The combined effect of nonessential (0, 5, 10 and $20{\mu}/ml$ MEM) and essential amino acids (0, 5, 10 and $10{\mu}/ml$ MEM) in NCSU-23 medium (Exp. 3), first 72 h with non-essential amino acids (at 0, 5, 10 and $20{\mu}/ml$ MEM), and last 4 d with essential amino acids with the same level as NEAA (Exp. 4) were examined. The embryo development was monitored and the quality of blastocysts was evaluated by counting the number of total cells and determining the ratio of inner cell mass (ICM) to trophoectoderm (TE) cells. When Eagle's nonessential amino acids (MEM) added to NCSU-23 medium, it significantly increased the likelihood of development to the 2- to 4-cell stage and subsequent blastocyst development. Supplementation of different levels of essential amino acids in the NCSU-23 medium decreased cleavage rate, rate of morula and blastocyst development and the number of ICMs. In the case of the combined effect of essential and nonessential amino acids, better and significant results were found for blastocysts, hatching blastocysts and for ICM numbers which were also dose dependent. With respect to the biphasic effect of nonessential and essential amino acids, nonessential amino acids increased cleavage whereas essential amino acids increased the total cell number. Neither the nonessential nor the essential group of amino acids, on their own, affected blastocyst cell number or the differentiation of cells in the blastocyst. In conclusion, this study determined the role of nonessential and essential amino acids in the culture of the porcine embryo and showed that the embryo requires different levels of amino acids as it develops from the zygote to the blastocyst stage.

RNA helicase DEAD-box-5 is involved in R-loop dynamics of preimplantation embryos

  • Hyeonji Lee;Dong Wook Han;Seonho Yoo;Ohbeom Kwon;Hyeonwoo La;Chanhyeok Park;Heeji Lee;Kiye Kang;Sang Jun Uhm;Hyuk Song;Jeong Tae Do;Youngsok Choi;Kwonho Hong
    • Animal Bioscience
    • /
    • 제37권6호
    • /
    • pp.1021-1030
    • /
    • 2024
  • Objective: R-loops are DNA:RNA triplex hybrids, and their metabolism is tightly regulated by transcriptional regulation, DNA damage response, and chromatin structure dynamics. R-loop homeostasis is dynamically regulated and closely associated with gene transcription in mouse zygotes. However, the factors responsible for regulating these dynamic changes in the R-loops of fertilized mouse eggs have not yet been investigated. This study examined the functions of candidate factors that interact with R-loops during zygotic gene activation. Methods: In this study, we used publicly available next-generation sequencing datasets, including low-input ribosome profiling analysis and polymerase II chromatin immunoprecipitation-sequencing (ChIP-seq), to identify potential regulators of R-loop dynamics in zygotes. These datasets were downloaded, reanalyzed, and compared with mass spectrometry data to identify candidate factors involved in regulating R-loop dynamics. To validate the functions of these candidate factors, we treated mouse zygotes with chemical inhibitors using in vitro fertilization. Immunofluorescence with an anti-R-loop antibody was then performed to quantify changes in R-loop metabolism. Results: We identified DEAD-box-5 (DDX5) and histone deacetylase-2 (HDAC2) as candidates that potentially regulate R-loop metabolism in oocytes, zygotes and two-cell embryos based on change of their gene translation. Our analysis revealed that the DDX5 inhibition of activity led to decreased R-loop accumulation in pronuclei, indicating its involvement in regulating R-loop dynamics. However, the inhibition of histone deacetylase-2 activity did not significantly affect R-loop levels in pronuclei. Conclusion: These findings suggest that dynamic changes in R-loops during mouse zygote development are likely regulated by RNA helicases, particularly DDX5, in conjunction with transcriptional processes. Our study provides compelling evidence for the involvement of these factors in regulating R-loop dynamics during early embryonic development.

Stem Cell Biology, 최근의 진보 (Recent Advancement in the Stem Cell Biology)

  • 한창열
    • Journal of Plant Biotechnology
    • /
    • 제33권3호
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.