DOI QR코드

DOI QR Code

Improved Stability of GaN-based Hydrogen Sensor with SnO2 Nanoparticles/Pd Catalyst Layer Using UV Illumination

자외선 조사를 이용한 SnO2 나노입자/Pd 촉매층을 갖는 GaN 기반 수소 센서의 안정성 개선 연구

  • Won-Tae Choi (Department of Electronic and Electrical Engineering, Hongik University) ;
  • Hee-Jae Oh (Department of Electronic and Electrical Engineering, Hongik University) ;
  • Jung-Jin Kim (ChipsK Co., Ltd.) ;
  • Ho-Young Cha (Department of Electronic and Electrical Engineering, Hongik University)
  • Received : 2023.09.18
  • Accepted : 2023.10.20
  • Published : 2023.10.31

Abstract

An AlGaN/GaN heterojunction-based hydrogen sensor with SnO2 nanoparticles/Pd catalyst layer was fabricated for room-temperature hydrogen detection. The fabricated sensor exhibited unstable drift in standby current when it was operated at room temperature. The instability in the sensing signal was dramatically improved when the sensor was operated under UV illumination.

본 연구에서는 SnO2 나노입자와 Pd 금속의 이중층으로 구성된 촉매층을 갖는 AlGaN/GaN 이종접합 기반의 상온동작 수소센서를 제작하여 해당 센서의 안정성 개선 연구를 수행하였다. 제작된 센서를 고온 환경이 아닌 상온에서 수소에 노출 및 차단을 반복하며 동작 시켰을 때 시간에 따라 대기전류가 감소하는 불안정한 전류 드리프트 (current drift) 현상이 발생하였지만, 자외선 (UV) 조사를 함께 진행하면서 반복 측정을 하였을 때 해당 불안정성의 가시적인 개선 효과를 이루었다.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program (Grant Number: 2015R1A6A1A03031833), Basic Science Research Program (Grant Number: 2022R1A 2C1003723), and National Research Foundation of Korea (Grant Number: 2019M3F5A1A01077147).

References

  1. G. Chung, H.Y. Cha, and H. Kim, "Enhanced Hydrogen Sensitivity of AlGaN/GaN Heterojunction Gas Sensors by GaN-Cap Layer," Electronics Letters, 2018, Vol. 54, No. 14, pp.896-897 https://doi.org/10.1049/el.2018.1167
  2. P. Agnolucci, "Economics and Market Prospects of Portable Fuel Cells," International Journal of Hydrogen Energy 2007, Vol. 32, pp. 4319-4328 https://doi.org/10.1016/j.ijhydene.2007.03.042
  3. R.A. Felseghi, E. Carcadea, M. S. Raboaca, R.N. Trufin, and C. Filote, "Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications
  4. J.H. Choi, T.A. Vuong, H.T. Kim, and H.Y. Cha, "High-Sensitivity Hydrogen Sensor Based on AlGaN/GaN Heterojunction Field-Effect Transistor," in Journal of Nanoscience and Nanotechnology, 2020, 20, pp. 4404-4408 https://doi.org/10.1166/jnn.2020.17786
  5. T.A. Vuong, H.Y. Cha, and H.T. K, "Response Enhancement of Pt-AlGaN/GaN HEMT Gas Sensors by Thin AlGaN Barrier with the Source-Connected Gate Configuration at High Temperature," in Micromachines 2021, 12, pp.537.
  6. C.C. Ndaya, N. Javahiraly, and A. Brioude, "Recent Advances in Palladium Nanoparticles-Based Hydrogen Sensors for Leak Detection," Sensors, vol.19, no.20, 2019, pp.4478
  7. W.T. Koo, S.Qiao, et al., "Accelerating Palladium Nanowire H2 Sensors Using Engineered Nanofiltration," 2017, 11, pp.9276-9285 https://doi.org/10.1021/acsnano.7b04529
  8. X. Li, Y., Liu, et al, "Catalytically Activated Palladium@ Platinum Nanowires for Accelerated Hydrogen Gas Detection. ACS Nano 2015, 9, pp.3215-3225 https://doi.org/10.1021/acsnano.5b00302
  9. B. Yuliarto, "SnO2 Nanostructure as Pollutant Gas Sensors: Synthesis, Sensing Performances, and Mechanism", 2015,
  10. W.T. Choi, T.H. Park, J.H.Hur, J.J. Kim, and H.Y. Cha, "Improved Response Characteristics of GaN-Based Hydrogen Sensor with SnO2 Nanoparticles," in The Journal of Korean Institute of Electromagnetic Engineering and Science, 2022. 33(2), pp.92-97 https://doi.org/10.5515/KJKIEES.2022.33.2.92
  11. S. T. Hung, C. J. Chang, et al., "SnO2 Functionalized AlGaN/GaN high electron mobility transistor for gydrogen sensing applications," International Journal of Hydrogen Energy, vol18, no. 18, pp.1378213788
  12. A.Varghese, A. Eblabla, and K. Elgaid, "Modeling and Simulation of Ultrahigh Sensitive AlGaN/AlN/GaN HEMT-Based Hydrogen Gas Detector with Low Detection Limit," IEEE Sensors Journal, 2021, vol.21, No.13, pp.15361
  13. T.B. Flanagan, "The Palladium-Hydrogen System," 1991, 21, pp.269-304