DOI QR코드

DOI QR Code

Assessing the Climatic Suitability for the Drywood Termite, Cryptotermes domesticus Haviland (Blattodea: Kalotermitidae), in South Korea

마른나무흰개미(가칭)의 국내 기후적합성 평가

  • Min-Jung Kim (Forest Entomology and Pathology Division, National Institute of Forest Science) ;
  • Jun-Gi Lee (Forest Entomology and Pathology Division, National Institute of Forest Science) ;
  • Youngwoo Nam (Forest Entomology and Pathology Division, National Institute of Forest Science) ;
  • Yonghwan Park (Forest Entomology and Pathology Division, National Institute of Forest Science)
  • 김민중 (국립산림과학원 산림병해충연구과) ;
  • 이준기 (국립산림과학원 산림병해충연구과) ;
  • 남영우 (국립산림과학원 산림병해충연구과) ;
  • 박용환 (국립산림과학원 산림병해충연구과)
  • Received : 2023.06.15
  • Accepted : 2023.08.28
  • Published : 2023.09.01

Abstract

A recent discovery of drywood termites (Cryptotermes domesticus) in a residential facility in Seoul has raised significant concern. This exotic insect species, which can damage timber and wooden buildings, necessitates an immediate investigation of potential infestation. In this study, we assessed the climatic suitability for this termite species using a species distribution modeling approach. Global distribution data and bioclimatic variables were compiled from published sources, and predictive models for climatic suitability were developed using four modeling algorithms. An ensemble prediction was made based on the mean occurrence probability derived from the individual models. The final model suggested that this species could potentially establish itself in tropical coastal regions. While the climatic suitability in South Korea was generally found to be low, a careful investigation is still warranted due to the potential risk of colonization and establishment of this species.

최근 국내에서 외래 곤충인 (가칭)마른나무흰개미(Cryptotermes domesticus)가 서울에 위치한 주택에서 발견되었다. 이 종은 국내에 정착할 경우 잠재적으로 목재나 목조건물에 피해를 줄 수 있어 시급한 국내 발생 조사가 필요하다. 본 연구에서는 종 분포 모델 기법을 활용하여 마른나무흰개미의 정착 가능성과 관련된 기후적합성을 추정하는 것을 목표로 하였다. 문헌 자료를 바탕으로 전세계 분포 정보를 수집하고, 생물기후변수를 활용하여 4개의 모델링 알고리즘으로 기후적합성 예측 모델을 구동하였다. 개발한 모델들의 결과를 종합하여 최종적으로 마른나무흰개미의 평균 발생 확률로 표현되는 앙상블 모델을 개발하였다. 그 결과 마른나무흰개미는 열대 지방에서에서 해양성 기후를 보이는 연안이나 도서지역에서 기후적합성이 높을 것으로 예상되었다. 국내에서는 기후적합성이 전반적으로 낮을 것으로 추정되었다. 하지만, 마른나무흰개미의 정착 및 확산 가능성을 염두해두고, 최근 발생이 보고된 지점을 중심으로 정밀 역학 조사가 필요할 것으로 보인다.

Keywords

Acknowledgement

본 연구는 국립산림과학원의 지원으로 수행하였습니다(FE 0703-2022-01-2023).

References

  1. Araujo, R.L. 1970. Termites of the neotropical region, in: Krishna, K., Weesner, F.M. (Eds.), Biology of termites. Academic Press. New York, pp. 527-576.
  2. Baek, S., Kim, M.-J., Lee, J.-H., 2019. Current and future distribution of Ricania shantungensis (Hemiptera: Ricaniidae) in Korea: Application of spatial analysis to select relevant environmental variables for MaxEnt and CLIMEX modeling. Forests 10, 490.
  3. Barbet-Massin, M., Jiguet, F., Albert, C.H., Thuiller, W., 2012. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
  4. Elith, J., Leathwick, J.R., 2009. Species distribution models: Ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  5. Evans, T.A., 2010. Invasive termites, in: Bignell D.E., Roisin, Y., Lo, N., (Eds.), Biology of termites: A Modern Synthesis. Springer, Dordrecht, pp. 519-562.
  6. Evans, T.A., Forschler, B.T., Grace, J.K., 2013. Biology of invasive termites: A worldwide review. Annu. Rev. Entomol. 58, 455-474. https://doi.org/10.1146/annurev-ento-120811-153554
  7. Hao, T., Elith, J., Guillera-Arroita, G., Lahoz-Monfort, J.J., 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25, 839-852. https://doi.org/10.1111/ddi.12892
  8. Hellmann, J.J., Byers, J.E., Bierwagen, B.G., Dukes, J.S., 2008. Five potential consequences of climate change for invasive species. Conserv. Biol. 22: 534-543. https://doi.org/10.1111/j.1523-1739.2008.00951.x
  9. Himmi, S.K., Fajar, A., Wikantyoso, B., Tjahyono, B., Nurjanah, N., Tarmadi, D., Yusuf, S., 2021. Distribution record of the invasive drywood termite Cryptotermes domesticus (Haviland) in Riau Province, Sumatra Island, Indonesia. Earth Environ. Sci. 918, 012039.
  10. Hong, K.-J., Lee, J.-H., Lee, G.-S., Lee, S., 2012. The status quo of invasive alien insect species and plant quarantine in Korea. J. Asia Pac. Entomol. 15, 521-532. https://doi.org/10.1016/j.aspen.2012.06.003
  11. Huang, Z.-Y., Qian, X., Zhong, J.-H., Hu, J., Xia, C.-G., Li, Z.-Q., 2009. A review on drywood termite Cryptotermes domesticus (Isoptera: Kalotermitidae). Acta Entomol. Sin. 52, 319-326.
  12. Indrayani, Y., Takematsu, Y., Yochimura, T., 2017. Diversity and distribution of termites in buildings in Pontianak, West Kalimantan, Indonesia. Biodiversitas 18, 954-957. https://doi.org/10.13057/biodiv/d180312
  13. Kim, M.-J., Baek, S., Lee, S.-B., Lee, S.-K., Park, B., Lee, Y.S., Ahn, K.-S., Choi, Y.-S., Seo, H.-Y., Lee, J.-H., 2019. Current and future distribution of Metcalfa pruinosa (Say) (Hemiptera: Flatidae) in Korea: Reasoning of fast spreading. J. Asia Pac. Entomol. 22, 933-940. https://doi.org/10.1016/j.aspen.2019.07.007
  14. Namgung, H., Kim, M.-J., Baek, S., Lee, J.-H., Kim, H., 2020. Predicting potential current distribution of Lycorma delicatula (Hemiptera: Fulgoridae) using MaxEnt model in South Korea. J. Asia Pac. Entomol. 23, 291-297. https://doi.org/10.1016/j.aspen.2020.01.009
  15. R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  16. Scheffrahn, R.H., Krecek, J., 1999. Termites of the genus Cryptotermes Banks (Isoptera: Kalotermitidae) from the West Indies. Insecta Mundi 13, 111-171.
  17. Shim, J., Park, H., Ju, H.-J., Song, J.-H., 2021. First record of the termite family Kalotermitidae (Blattodea: Termitoidae) in Korea. J. Asia Pac. Entomol. 24, 1266-1269. https://doi.org/10.1016/j.aspen.2021.08.017
  18. Thuiller, W., Lafourcade, B., Engler, R., Araujo, M.B., 2009. BIOMOD - A platform for ensemble forecasting of species distributions. Ecography 32, 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x