DOI QR코드

DOI QR Code

An Optimal Standardized in vitro Bioassay to Evaluate Susceptibility of Green Peach Aphid, Myzus persicae (Sulzer)(Insecta: Hemoptera: Aphididae), to Aphicides

복숭아혹진딧물, Myzus persicae (Sulzer)(Insecta: Hemoptera: Aphididae), 살진딧물 최적 in vitro 살충력 검정 방법 확립

  • Ka Hee Cho (Department of Applied Biology, Chonnam National University) ;
  • Hyo Jung Kim (Environment-Friendly Agriculture Research Institute, Jeollanamdo Agricultural Research & Extension Services) ;
  • Young Cheol Kim (Department of Applied Biology, Chonnam National University)
  • 조가희 (전남대학교 농업생명과학대학 응용생물학과) ;
  • 김효정 (전남농업기술원) ;
  • 김영철 (전남대학교 농업생명과학대학 응용생물학과)
  • Received : 2023.06.15
  • Accepted : 2023.07.26
  • Published : 2023.09.01

Abstract

Leaf-spray in vitro bioassays appraise new aphicidal formulations for managing deleterious plant-feeding aphids. The formulation may utilize alternative and integrated strategies. However, leaf spraying even under controlled conditions may affect aphid reproduction and mortality. This study examines leaf spray applications for optimum and reproducible aphicidal results using tobacco leaves overlaid on cotton fabric or water agar surfaces. Infestation of the undersides of tobacco leaves with nymphs of green peach aphids was used in the assays. Spray distance and volume were optimized using water-sensitive paper to ascertain the best surface coverage. Overlays of the leaves on water agar caused less mortality and greater reproduction than the use of cotton fabric. The relative humidity of the insect-rearing chambers changed with the watering regime for the insect - rearing chambers with cotton fabric; 60% relative humidity was optimal. Relative humidity was not affected by the concentration of agar in the water agar chambers. Applications of the chemical aphicidal standard, Sulfoxaflor, under the optimized conditions exhibited similar times for lethality although the rate was faster with leaves on the cotton fabric than on water agar. These studies establish reproducible and sensitive techniques for assessing the lethality and effects on reproduction of potential aphicidal products.

진딧물 방제제 개발을 위해 In vitro 경엽살포 검정방법이 널리 사용되고 있다. 이러한 신소재 진딧물 방제 제형은 종합방제와 화학농약의 대안으로 많은 연구가 진행되고 있다. 하지만, 경엽살포 검정방법은 환경이 조절되는 실내에서도 진딧물의 증식과 살충에 영향을 받는다. 본 연구에서는 담배를 기주로 하여 솜과 한천방법을 이용하여 진딧물 방제제 검정을 위한 최적 경엽살포 확립하고자 하였다. 진딧물 검정 챔버에 솜과 한천을 넣은 후 담배 잎과 진딧물 3-4령 약충을 접종하였다. Water-sensitive paper를 이용하여 경엽살포 시에 가장 표면 피복이 높은 최적 경엽살포 거리와 살포량을 확립하였다. 대조구로 물을 처리한 구에서 한천 방법이 솜 방법에 비해 살충율이 낮고, 증식율이 높았다. 솜 검정 방법에는 곤충 검정 챔버의 상대습도를 60% 이상 유지시켰을 때 가장 최적 조건이었지만, 한천 검정 방법에서는 한천의 농도에 상대습도 차이가 없었다. 최적화된 조건하에서 대조화학 농약, Sulfoxaflor, 경엽살포 시 솜 방법에서 살충율이 한천방법보다 빨랐지만, 최종 살충율은 통계적으로 유의하지 않았다. 본 연구는 살진딧물 물질을 검정 시 재현성과 활용성이 가능한 최적화된 증식율과 살충율 검정 조건을 제시하였다.

Keywords

Acknowledgement

Funding was provided by the Cooperative Research Program for Agriculture Science & Technology Development (project no. RS02022-RD010417), Rural Development Administration, Republic of Korea.

References

  1. Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267. https://doi.org/10.1093/jee/18.2.265a
  2. Bass, C,, Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., Gutbrod, O., Nauen, R., Slater, R., Williamson, M.S., 2014. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 51, 41-51. https://doi.org/10.1016/j.ibmb.2014.05.003
  3. Capinera, J.L., 2001. Green peach aphid, Myzus persicae (Sulzer) (Insecta: Hemiptera: Aphididae). In: Capinera, J.L. (ed.), Encyclopedia of entomology. Springer, Dordrecht.
  4. Cerruto, E., Manetto, G., Longo, D., Failla, S., Papa, R., 2019. A model to estimate the spray deposit by simulated water sensitive papers. Crop Prot. 124, 104861.
  5. Chandrasena, D., DiFonzo, C., Byrne, A., 2011. An aphid-dip bioassay to evaluate susceptibility of soybean aphid (Hemiptera: Aphididae) to pyrethroid, organophosphate, and neonicotinoid insecticides. J. Econ. Entomol. 104, 1357-1363. https://doi.org/10.1603/EC10414
  6. Dreyer, D.L., Reese, J.C., Jones, K.C., 1981. Aphid feeding deterrents in sorghum: Bioassay isolation and characterization. J. Chem. Ecol. 7, 273-284. https://doi.org/10.1007/BF00995750
  7. El-Wakeil, N.E., 2013. Botanical pesticides and their mode of action. Gesunde Pflanzen 65, 125-149. https://doi.org/10.1007/s10343-013-0308-3
  8. Erdos, Z., Halswell, P., Matthews, A., Raymond, B., 2020. Laboratory sprayer for testing of microbial biocontrol agents: Design and calibration. bioRxiv, 2020.2004.2022.054551. 2020.2004.2022.054551
  9. Finney, D.J., Stevens, W.L., 1948. A table for the calculation of working probits and weights in probit analysis. Biometrika 35, 191-201. https://doi.org/10.1093/biomet/35.1-2.191
  10. Goel, M.K,, Khanna, P., Kishore, J., 2010. Understanding survival analysis: Kaplan-Meier estimate. Int. J. Ayurveda Res. 1, 274-278. https://doi.org/10.4103/0974-7788.76794
  11. Hesketh, H., Alderson, P.G., Pye, B.J., Pell, J.K., 2008. The development and multiple uses of a standardised bioassay method to select hypocrealean fungi for biological control of aphids. Biol. Control. 46, 242-255. https://doi.org/10.1016/j.biocontrol.2008.03.006
  12. Isman, M.B., Grieneisen, M.L., 2014. Botanical insecticide research: Many publications, limited useful data. Trends in Plant Sci. 19, 140-145. https://doi.org/10.1016/j.tplants.2013.11.005
  13. Kang, B.R., Anderson, A.J., Kim, Y.C., 2019. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 is a key aphicidal metabolite. Can. J. Microbiol. 65, 185-190. https://doi.org/10.1139/cjm-2018-0372
  14. Kaplan, E.L., Meier, P., 1958. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
  15. Kim, D.-I., Choi, D.-S., Ko, S.-J., Kang, B.-R., Park, C.-G., Kim, S.-G., Park, J.-D., Kim S.-S., 2012. Comparison of development times of Myzus persicae (Hemiptera:Aphididae) between the constant and variable temperatures and its temperature-dependent development models. Korean J. Appl. Entomol. 51, 431-438. https://doi.org/10.5656/KSAE.2012.10.0.032
  16. Kim, S.-K., Jin, J.-H., Lim, C.-K., Hur, J.-H., Cho, S.-Y., 2009. Evaluation of insecticidal efficacy of plant extracts against major insect pests. Korean J. Pestic. Sci.13, 165-170.
  17. Lee, Y.S., Han, J.H., Kang, B.R., Kim, Y.C., 2019. Dibutyl succinate, produced by an insect-pathogenic fungus, Isaria javanica pf185, is a metabolite that controls of aphids and a fungal disease, anthracnose. Pest Manag. Sci. 75, 852-858. https://doi.org/10.1002/ps.5191
  18. Li, X., Wang, C., Li, Q., Zhu, S., Tian, X., Zhang, Y., Li, X., Gao, H., Liu, E., Wang, L., Zhu, X., 2021. Field-evolved Sulfoxaflor resistance of three wheat aphid species in China. Agronomy 11, 2325.
  19. Liu, T.-X., Stansly, P.A., 1995. Deposition and bioassay of insecticides applied by leaf dip and spray tower against Bemisia argentifolii nymphs (Homoptera: Aleyrodidae). Pestic. Sci. 44, 317-322. https://doi.org/10.1002/ps.2780440403
  20. Mittler, T.E., Dadd, R.H., 1962. Artificial feeding and rearing of the aphid, Myzus persicae (Sulzer), on a completely defined synthetic diet. Nature 195, 404-404. https://doi.org/10.1038/195404a0
  21. Mohammed, A.A., Hatcher, P.E., 2016. Effect of temperature, relative humidity and aphid developmental stage on the efficacy of the mycoinsecticide Mycotal® against Myzus persicae. Biocontrol Sci. Technol. 26, 1379-1400. https://doi.org/10.1080/09583157.2016.1207219
  22. Ng, J.C., Perry, K.L., 2004. Transmission of plant viruses by aphid vectors. Mol. Plant Pathol. 5, 505-511. https://doi.org/10.1111/j.1364-3703.2004.00240.x
  23. Norman, P.A., Sutton, R.A., 1967. Host plants for laboratory rearing of the melon aphid. J. Econ. Entomol. 60, 1205-1207. https://doi.org/10.1093/jee/60.5.1205
  24. Ozder, N., Saglam, O., 2013. The effects of temperature for development time, fecundity and reproduction on some ornamental aphid species. J. Cent. Eur. Agric. 14, 149-157. https://doi.org/10.5513/JCEA01/14.2.1243
  25. Paramasivam, M., Selvi, C.T., 2017. Laboratory bioassay methods to assess the insecticide toxicity against insect pests-A review. J. Entomol. Zool. 5, 1441-1445.
  26. Sharma, H.C., Pampapathy, G., Dhillon, M.K., Ridsdill-Smith, J.T., 2005. Detached leaf assay to screen for host plant resistance to Helicoverpa armigera. J. Econ. Entomol. 98, 568-576. https://doi.org/10.1093/jee/98.2.568
  27. Silva, A.X., Bacigalupe, L.D., Luna-Rudloff, M., Figueroa, C.C., 2012a. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) II: Costs and benefits. PLOS ONE 7, e36810.
  28. Silva, A.X., Jander, G., Samaniego, H., Ramsey, J.S., Figueroa, C.C., 2012b. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: a transcriptomic survey. PLOS ONE 7, e36366.
  29. Sparks, T.C., Watson, G.B., Loso, M.R., Geng, C., Babcock, J.M., Thomas, J.D., 2013. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects. Pestic. Biochem. Phys. 107, 1-7. https://doi.org/10.1016/j.pestbp.2013.05.014
  30. Vandenberg, J.D., 1996. Standardized bioassay and screening of Beauveria bassiana and Paecilomyces fumosoroseus against the russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 89, 1418-1423. https://doi.org/10.1093/jee/89.6.1418
  31. Venkanna, Y., Suroshe, S.S., 2023. A simple technique for continuous rearing of cotton aphid, Aphis gossypii Glover. Int. J. Trop. Insect Sci. 43, 519-526. https://doi.org/10.1007/s42690-023-00951-6
  32. Wattier, C., Turbant, A., Sargos-Vallade, L., Pelloux, J., Rusterucci, C., Cherqui, A., 2019. New insights into diet breadth of polyphagous and oligophagous aphids on two Arabidopsis ecotypes. Insect Sci. 26, 753-769. https://doi.org/10.1111/1744-7917.12563
  33. Zhu, H., Salyani, M., Fox, R.D., 2011. A portable scanning system for evaluation of spray deposit distribution. Comput. Electron. Agric. 76, 38-43. https://doi.org/10.1016/j.compag.2011.01.003