DOI QR코드

DOI QR Code

옥수수의 생육 및 수량 증대를 위한 지중점적 관비 시스템의 적용

Application of Subsurface Drip Fertigation System to Increase Growth and Yield of Maize

  • 김종혁 (경상국립대학교 응용생명과학부) ;
  • 이연주 (경상국립대학교 농학과) ;
  • 노일래 (경상국립대학교 농학과)
  • Jong Hyuk Kim (Department of Applied Life Science, Gyeongsang National University) ;
  • Yeon Ju Lee (Department of Agronomy, Gyeongsang National University) ;
  • Il Rae Rho (Department of Agronomy, Gyeongsang National University)
  • 투고 : 2023.07.10
  • 심사 : 2023.07.24
  • 발행 : 2023.09.01

초록

본 연구는 지중점적시설을 이용한 옥수수 관수·관비재배시 옥수수의 생육 및 수량 반응을 조사하여 적합한 관수 및 관비기준을 마련하고자 수행되었다. 1) 사양토 조건에서 지중점적시설을 이용한 관비 재배시 옥수수 근권부까지 필요한 수분은 24.3 ton 10a-1의 물이 소모되었다. 2) 사양토(점토함량 10.2%) 조건에서 한번 관수·관비로 토양수분함량이 25%정도 유지될 수 있는 기간은 25일, 20% 정도까지는 30일간 지속되었다. 3) 지중점적 관수·관비처리에 따른 옥수수 지상부 생육은 N 8 처리구에서 가장 우수하였으며 N 10 처리구에서는 감소하는 경향이 나타났다. 4) 지중점적 관수·관비처리에 따른 옥수수 수량구성요소는 N 8 처리구가 가장 우수하였으며 관수구 대비 약 14%, 무처리 대비 약 30%의 증수 효과를 나타내었다.

This study was conducted to investigate how maize (Zea maize L.) growth and yield were affected by irrigation and fertigation using a subsurface drip system. The system consisted of a buried (40 cm underground) drip pipe that can be used in a semi-permanent manner without affecting agricultural work on the ground. The amount of water required for the fertigation treatment was determined to be 24.3 tons 10a-1 for the sandy loam soil used in this experimental field. Fertigation treatments based on the previously calculated 24.3 tons 10a-1 were carried out as topdressing applications. They were applied through the subsurface drip system with the following fertilizer concentration (nitrogen only, written in kg 10a-1: N 4, N 6, N 8, N 10 ). The other treatments were irrigation only and control (non-treatment). The results indicated that the N 8 treatment was the most effective, increasing yield by 30% and 14% compared with the control and irrigation treatments, respectively. These results highlight the effectiveness of fertigation (N 8 kg 10a-1) at V6 and R1 stage as a form of topdressing fertilization using a subsurface drip system for achieving a high yield and stable maize production.

키워드

과제정보

본 논문은 농촌진흥청 공동연구사업(과제번호PJ015754022023)의 지원을 받았으며, 이에 감사합니다.

참고문헌

  1. Adeniyan, O. N. 2014. Effect of different population densities and fertilizer rates on the performance of different maize varieties in two rain forest agro ecosystems of South West Nigeria. African Journal of Plant Science 8(8) : 410-415. https://doi.org/10.5897/AJPS2014.1182
  2. Ashraf, U., M. N. Salim, S. H. E. R. Alam, K. H. A. N. Aqil, P. A. N. Shenggang, and T. A. N. G. Xiangru. 2016. Maize growth, yield formation and water-nitrogen usage in response to varied irrigation and nitrogen supply under semi-arid climate. Turkish Journal of Field Crops 21(1) : 88-96.
  3. Ayars, J. E., C. J. Phene, R. B. Hutmacher, K. R. Davis, R. A. Shoneman, S. S. Vail, R. M. Mead. 1999. Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory. Agricultural Water Management 42(1) : 1-27. https://doi.org/10.1016/S0378-3774(99)00025-6
  4. Aydinsakir, K., N. Dinc, D. Buyuktas, M. Kocaturk, C. F. Ozkan, and C. Karaca. 2021. Water productivity of soybeans under regulated surface and subsurface drip irrigation conditions. Irrigation Science 39(6) : 773-787. https://doi.org/10.1007/s00271-021-00744-0
  5. Badr, A. E. and M. E. Abuarab. 2013. Soil moisture distribution patterns under surface and subsurface drip irrigation systems in sandy soil using neutron scattering technique. Irrigation Science 31(3) : 317-332. https://doi.org/10.1007/s00271-011-0306-0
  6. Bender, R. R., J. W. Haegele, M. L. Ruffo, and F. E. Below. 2013. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. Agronomy Journal 105(1) : 161-170. https://doi.org/10.2134/agronj2012.0352
  7. Cakir, R. 2004. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research 89(1) : 1-16.
  8. De Pascale, S., L. Dalla Costa, S. Vallone, G. Barbieri, and A. Maggio. 2011. Increasing water use efficiency in vegetable crop production: from plant to irrigation systems efficiency. HortTechnology 21(3) : 301-308. https://doi.org/10.21273/HORTTECH.21.3.301
  9. Ertek, A. and B. Kara. 2013. Yield and quality of sweet corn under deficit irrigation. Agricultural Water Management 129(1) : 138-144. https://doi.org/10.1016/j.agwat.2013.07.012
  10. Fanish, S. A., P. Muthukrishnan, and P. Santhi. 2011. Effect of drip fertigation on field crops-a review. Agricultural Reviews 32(1) : 14-25.
  11. FAO (Food and Agriculture Organization). 2022. https://www.fao.org/faostat.
  12. Gao, Y., L. Yang, X. Shen, X. Li, J. Sun, A. Duan, and L. Wu. 2014. Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency. Agricultural Water Management 146(1) : 1-10. https://doi.org/10.1016/j.agwat.2014.07.010
  13. Gawali, J., A. Dhamak, and S. Waikar. 2020. Effect of Water-Soluble fertilizers through fertigation on growth, yield component and yield of Bt cotton. International Journal of Communication Systems 8(5) : 2635-2638. https://doi.org/10.22271/chemi.2020.v8.i5aj.10716
  14. Gencoglan, C., H. Altunbey, and S. Gencoglan. 2006. Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation. Agricultural Water Management 84(3) : 274-280.
  15. Hassan, S. W., F. C. Oad, S. D. Tunio, A. W. Gandahi, M. H. Siddiqui, S. M. Oad, and A. W. Jagirani. 2010. Impact of nitrogen levels and application methods on agronomic, physiological and nutrient uptake traits of maize fodder. Pakistan Journal of Botany 42(6) : 4095-4101.
  16. Irmak, S., K. Djaman, and D. R. Rudnick. 2016. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrigation Science 34(4) : 271-286. https://doi.org/10.1007/s00271-016-0502-z
  17. Jha, S. K., Y. Gao, H. Liu, Z. Huang, G. Wang, Y. Liang, and A. Duan. 2017. Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China. Agricultural Water Management 182(1) : 139-150. https://doi.org/10.1016/j.agwat.2016.12.015
  18. Kandelous, M. M., J. Simunek, M. T. Van Genuchten, and K. Malek. 2011. Soil water content distributions between two emitters of a subsurface drip irrigation system. Soil Science Society of America Journal 75(2) : 488-497. https://doi.org/10.2136/sssaj2010.0181
  19. KOSIS (Korean Statistical Information Service). 2023. https://kosis.kr/index/index.do
  20. Kumar, S. T. and B. J. Pandian. 2010. Effect of fertigation frequencies and levels on growth and yield of maize. Madras Agricultural Journal 97(7-9) : 245-248.
  21. Kumar, S., M. A. Basavanneppa, B. G. Koppalkar, M. R. Umesh, and A. K. Gaddi. 2018. Precision nitrogen management in maize (Zea mays L.) through leaf colour chart tool in Tunga Bhadra Command area. Bulletin of Environment, Pharmacology and Life Sciences 7(2) : 43-46.
  22. Lamm, F. R. 2016. Cotton, tomato, corn, and onion production with subsurface drip irrigation: A review. Transactions of the American Society of Agricultural and Biological Engineers 59(1) : 263-278.
  23. Lamm, F. R. and A. J. Schlegel. 2013. Effect of subsurface drip irrigation capacity and nitrogen fertigation timing on corn production. In 2013 Kansas City, Missouri, July 21-July 24, 2013 (p. 1). American Society of Agricultural and Biological Engineers.
  24. Lamm, F. R. and T. P. Trooien. 2003. Subsurface drip irrigation for corn production: a review of 10 years of research in Kansas. Irrigation Science 22(1) : 195-200. https://doi.org/10.1007/s00271-003-0085-3
  25. Lee, S., K. Y. Jung, H. C. Chun, Y. D. Choi, and H. W. Kang. 2018. Response of soybean (Glycine max L.) to subsurface drip irrigation with different dripline placements at a sandyloam soil. Korean Journal of Soil Science and Fertilizer 51(2) : 79-89. https://doi.org/10.7745/KJSSF.2018.51.2.079
  26. Liang, S. and T. Yoshihira. 2022. Effect of nitrogen topdressing on planting density response of grain yield in maize with different planting pattern cultivation. Grassland Science 68(3) : 286-297. https://doi.org/10.1111/grs.12364
  27. Lyou, C. W., Y. C. Shin, S. G. Heo, Y. H. Choi, K. J. Lim, and J. D. Choi. 2005. Comparison of pollutant load discharge characteristics with chemical fertilizer and organic compost applications. In Proceedings of the Korean Society of Agricultural Engineers Conference (pp. 490-495). The Korean Society of Agricultural Engineers.
  28. Ma, L., L. R. Ahuja, T. J. Trout, B. T. Nolan, and R. W. Malone. 2016. Simulating maize yield and biomass with spatial variability of soil field capacity. Agronomy Journal 108(1) : 171-184. https://doi.org/10.2134/agronj2015.0206
  29. Ma, L., L. R. Ahuja, A. Islam, T. J. Trout, S. A. Saseendran, and R. W. Malone. 2017. Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation. Agricultural Water Management 180(1) : 88-98. https://doi.org/10.1016/j.agwat.2016.11.007
  30. Mattar, M. A., T. K. Zin El-Abedin, H. M. Al-Ghobari, A. A. Alazba, and H. O. Elansary. 2021. Effects of different surface and subsurface drip irrigation levels on growth traits, tuber yield, and irrigation water use efficiency of potato crop. Irrigation Science 39(1) : 517-533. https://doi.org/10.1007/s00271-020-00715-x
  31. Mi, N., F. Cai, Y. Zhang, R. Ji, S. Zhang, and Y. Wang. 2018. Differential responses of maize yield to drought at vegetative and reproductive stages. Plant, Soil and Environment 64(6) : 260-267. https://doi.org/10.17221/141/2018-PSE
  32. Millet, E. J., W. Kruijer, A. Coupel-Ledru, S. Alvarez Prado, L. Cabrera-Bosquet, S. Lacube, A. Charcosset, C. Welcker, and F. Tardieu. 2019. Genomic prediction of maize yield across European environmental conditions. Nature Genetics 51(6) : 952-956. https://doi.org/10.1038/s41588-019-0414-y
  33. Noor, M. A. 2017. Nitrogen management and regulation for optimum NUE in maize-A mini review. Cogent Food & Agriculture 3(1) : 1348214.
  34. Okumura, R. S., P. S. Vidigal Filho, C. A. Scapim, O. J. Marques, A. A. N. Franco, R. S. Souza, and D. L. Reche. 2014. Effects of nitrogen rates and timing of nitrogen topdressing applications on the nutritional and agronomic traits of sweet corn. Journal of Food, Agriculture and Environment 12(2) : 391-398.
  35. Pandey, R. K., J. W. Maranville, and M. M. Chetima. 2000. Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction. Agricultural Water Management 46(1) : 15-27. https://doi.org/10.1016/S0378-3774(00)00074-3
  36. Patel, N. E. E. L. A. M. and T. B. S. Rajput. 2013. Effect of deficit irrigation on crop growth, yield and quality of onion in subsurface drip irrigation. International Journal of Plant Production 7(3) : 417-436.
  37. Rasheed, Z. K. 2020. Analysis the wetted area for subsurface drip irrigation in different soils texture. Iraqi Journal of Agricultural Sciences 51(2) : 712-722. https://doi.org/10.36103/ijas.v51i2.999
  38. Reyes-Cabrera, J., Zotarelli, L., Dukes, M. D., Rowland, D. L., and Sargent, S. A. 2016. Soil moisture distribution under drip irrigation and seepage for potato production. Agricultural Water Management 169(1) : 183-192. https://doi.org/10.1016/j.agwat.2016.03.001
  39. Roh, Y. J., D. Y. Chung, J. H. Ryu, J. D. So, and J. W. Cho. 2015. The Effects of Nitrogen Rates on The growth and Yield of Waxy Corn after Cultivating Hairy Vetch in Agricultural Fields with The Stream. The Korean Journal of Crop Science 60(3) : 333-337. https://doi.org/10.7740/KJCS.2015.60.3.333
  40. Shahid, M. N., M. S. I. Zamir, I. U. Haq, M. K. Khan, M. Hussain, U. Afzal, M. Asum, and I. Ali. 2016. Evaluating the impact of different tillage regimes and nitrogen levels on yield and yield components of maize (Zea mays L.). American Journal of Plant Sciences 7(6) : 789-797. https://doi.org/10.4236/ajps.2016.76073
  41. Sharma, L. K. and S. K. Bali. 2017. A review of methods to improve nitrogen use efficiency in agriculture. Sustainability 10(1) : 51-74. https://doi.org/10.3390/su10010051
  42. Siebers, M. H., R. A. Slattery, C. R. Yendrek, A. M. Locke, D. Drag, E. A. Ainsworth, C. J. Bernacchi, and D. R. Ort. 2017. Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agriculture, Ecosystems & Environment 240(1) : 162-170. https://doi.org/10.1016/j.agee.2016.11.008
  43. Singh, B. P., B. J. Hatton, B. Singh, A. L. Cowie, and A. Kathuria. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality 39(4) : 1224-1235. https://doi.org/10.2134/jeq2009.0138
  44. Toureiro, C., R. Serralheiro, S. Shahidian, and A. Sousa. 2017. Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition. Agricultural Water Management 184 : 211-220. https://doi.org/10.1016/j.agwat.2016.02.010
  45. Ummenhofer, C. C. and G. A. Meehl. 2017. Extreme weather and climate events with ecological relevance: a review. Philosophical Transactions of the Royal Society B: Biological Sciences 372(1723) : 20160135.
  46. Van Donk, S. J., J. L. Petersen, and D. R. Davison. 2013. Effect of amount and timing of subsurface drip irrigation on corn yield. Irrigation Science 31 : 599-609. https://doi.org/10.1007/s00271-012-0334-4
  47. Wang, D., G. Li, Y. Mo, M. Cai, and X. Bian. 2018. Evaluation of optimal nitrogen rate for corn production under mulched drip fertigation and economic benefits. Field Crops Research 216(1) : 225-233. https://doi.org/10.1016/j.fcr.2017.10.002
  48. Wang, Y., S. Kang, F. Li, and X. Zhang. 2021. Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation. Agricultural Water Management 245 : 106566. https://doi.org/10.1016/j.agwat.2020.106566
  49. Zarski, J. and R. Kusmierek-Tomaszewska. 2023. Effects of Drip Irrigation and Top dressing Nitrogen Fertigation on Maize Grain Yield in Central Poland. Agronomy 13(2) : 360-375. https://doi.org/10.3390/agronomy13020360