DOI QR코드

DOI QR Code

대기온도와 CO2 농도 증가에 따른 우점잡초 깨풀의 제초제 약효 및 콩 약해 변화

Effects of Increasing Air Temperatures and CO2 Concentrations on Herbicide Efficacy of Acalypha australis and Phytotoxicity of Soybean Crops

  • Hyo-Jin Lee (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Hyun-Hwa Park (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Ye-Geon Kim (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Do-Jin Lee (Dep. of Agricultural Education, Sunchon National Univ.) ;
  • Yong-In Kuk (Dep. of Oriental Medicine Resources, Sunchon National Univ.)
  • 투고 : 2023.07.21
  • 심사 : 2023.07.26
  • 발행 : 2023.09.01

초록

본 연구의 목적은 기후변화에 따른 이산화탄소와 온도의 변화에 따른 콩밭 우점잡초 깨풀의 생장과 주요 4종의 경엽처리 제초제와 4종의 토양처리 제초제에 대한 약효와 콩의 약해를 평가하여 잡초 관리 방안을 마련하는 데 있다. 생장상과 온실상 조건하에서 온도가 증가할수록 깨풀의 초장 및 생체중은 증가하였다. 이산화탄소 농도에 따른 Fv/Fm, ETR, 초장, 엽면적 및 지상부 생체중은 400 ppm보다 800 ppm에서 더 높았다. 깨풀에 대한 경엽처리제 glufosinate 약효의 경우 생장상 조건의 20℃ 및 25℃보다 30℃에서 온실 상조건의 21℃ 및 25℃보다 29℃에서 감소하였다. 반대로 mecoprop의 경우 생장상 조건의 30℃에 비해 20℃에서 온실상 조건의 29℃에 비해 21℃에서 약효가 감소하였다. 경엽처리제 glyphosate의 경우 온실상 조건하에서는 25℃와 29℃에 비해 21℃에서 약효가 감소하였다. Bentazone을 생장상 조건하에서 1/2량 처리하였을 때 25℃와 30℃에 비해 20℃에서 약효가 감소하였다. 그러나 온실상 조건하에서는 21℃와 25℃에 비해 29℃에서 약효가 감소하였다. 깨풀에 대한 토양처리제 경우 생장상과 온실상 조건하에서 metolachlor와 ethalfluraline의 약효는 온도가 상대적으로 높은 조건하에서 약효가 높았다. 그러나 linuron의 경우는 생장상과 온실상의 온도에 상관없이 약효차이가 없었다. Alachlor의 경우 온실상 조건하에서 19℃와 23℃에 비해 27℃에서 약효가 감소하였다. 경엽처리 제초제 4종을 표준량으로 깨풀에 처리하였을 때 이산화탄소농도에 따른 차이는 없었다. 그러나 깨풀에 glyphosate 1/4량 처리하였을 때 이산화탄소 농도가 400 ppm보다 800 ppm일 때 약효는 감소하였다. 반대로 bentazone를 1/4량 처리하였을 때 이산화탄소 농도가 400 ppm보다 800 ppm일 때 약효는 증가하였다. Glufosinate은 처리약량에 상관없이 이산화탄소 농도에 따른 유의적인 차이가 없었다. 토양처리 제초제 ethalfluralin을 1/4량 처리하였을 때는 이산화탄소의 농도가 800 ppm일 때 약효가 더 높았다. 그 외의 제초제의 경우 이산화탄소 농도와 상관없이 깨풀의 약효에는 차이가 없었다. 콩에 토양처리 제초제를 표준량과 표준량의 2배량을 처리하였을 때 온도와 이산화탄소 농도에 따른 약해는 유의적인 차이가 없었다. 따라서 온도와 이산화탄소 농도 증가에 기인하여 일부 제초제에 대한 잡초 약효 차이가 있어 기후변화에 의한 새로운 잡초 관리 방법을 개발해야 할 것으로 판단된다.

The purpose of this study was to improve weed management systems under varying carbon dioxide concentrations and temperatures by evaluating the growth of Acalypha australis and observing the efficacy of four foliar and four soil herbicides, as well as measuring phytotoxicity in soybean crops treated with these herbicides. In both growth chamber and greenhouse conditions, plant height and shoot fresh weight of Acalypha australis increased as temperature increased. The variable to maximum fluorescence ratio (Fv/Fm), relative electron transport rate (ETR), plant height, leaf area, and shoot fresh weight of Acalypha australis were higher at carbon dioxide concentrations of 800 ppm than at 400 ppm. The efficacy of a foliar herbicide, glufosinate, on Acalypha australis was lower at 30℃ than at 20℃ and 25℃ in the growth chamber condition and was also lower at 29℃ than at 21℃ and 25℃ in greenhouse conditions. In contrast, mecoprop efficacy on Acalypha australis was lower at 20℃ and 25℃ than at 30℃ in growth chamber conditions and lower at 21℃ and 25℃ than at 29℃ in greenhouse conditions. Glyphosate efficacy was lower at 21℃ than at 25℃ and 29℃ under greenhouse conditions. With soil herbicides, metolachlor and ethalfluraline, efficacies were higher at relatively high temperatures under both growth chamber and greenhouse conditions. However, in the case of linuron, the difference in efficacy was not observed under varying temperatures in both growth chamber and greenhouse conditions. When ¼ of the recommended glyphosate rates were applied to Acalypha australis, efficacy was lower under 800 ppm carbon dioxide concentrations than under 400 ppm. In contrast, when ¼ of the recommended rate of bentazone was applied to Acalypha australis, efficacy was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. Despite application rates, glufosinate efficacy differed insignificantly under different carbon dioxide concentrations. When applied at ¼ of the recommended rate, the efficacy of ethalfuralin was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. However, efficacies of other herbicides were not different despite varying carbon dioxide concentrations. Soybean phytotoxicity in crops treated with the recommended rate and twice the recommended rate of soil herbicides was not significantly different regardless of temperature and carbon dioxide concentrations. Overall, weed efficacy of some herbicides decreased in response to different temperatures and carbon dioxide concentrations. Therefore, new weed management methods are required to ensure high rates of weed control in conditions affected by climate change.

키워드

과제정보

본 논문은 농촌진흥청 공동연구사업(IRIS 과제번호 : RS-2020-RD008666)의 지원으로 수행된 결과입니다. 연구과제의 실험 진행을 도와 주신 김희권, 정병준, 남지영, 우연후 연구원 분들께 감사드립니다.

참고문헌

  1. Ainsworth, E. A. and S. P. Long. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. Pest Management Science 165(2) : 351-372. https://doi.org/10.1111/j.1469-8137.2004.01224.x
  2. Al-Johani, N. S., A. A. Aytah, T. Boutraa, and S. Arabia. 2012. Allelopathic impact of two weeds, Chenopodium murale and Malva parviflora on growth and photosynthesis of barley (Hordeum vulgare L.). Pakistan Journal of Botany 44(6) : 1865-1872.
  3. Aruna, V. and M. Jugulam. 2016. Impact of climate change factors on weeds and herbicide efficacy. Advances in Agronomy 135 : 107-146. https://doi.org/10.1016/bs.agron.2015.09.002
  4. Awasthi, J. P., K. S. Paraste, M. Rathore, M. Varun, D. Jaggi, and B. Kumar. 2018. Effect of elevated CO2 on Vigna radiata and two weed species: yield, physiology and crop-weed interaction. Crop and Pasture Science 69(6) : 617-631. https://doi.org/10.1071/CP17192
  5. Bajwa, A. A., H. Wang, B. S. Chauhan, and S. W. Adkins. 2019. Effect of elevated carbon dioxide concentration on growth, productivity and glyphosate response of parthenium weed (Parthenium hysterophorus L.). Pest Management Science 75(11) : 2934-2941. https://doi.org/10.1002/ps.5403
  6. Bradley, B. A., D. M. Blumenthal, D. S. Wilcove, and L. H. Ziska. 2010. Predicting plant invasions in an era of global change. Trends in Ecology & Evolution 25(5) : 310-318. https://doi.org/10.1016/j.tree.2009.12.003
  7. Bridges, J. W. 2008. The history of the discovery and development of the pyrethroid insecticides. Environmental Toxicology and Chemistry 27(4) : 1098-1108.
  8. Devine, M. D., S. O. Duke, and C. Fedtke. 1993. Foliar absorption of herbicides. In Physiology of Herbicide Action; Prentice-Hall: Englewood Cliffs. NJ, USA. pp. 29-52.
  9. Dong, X. and H. Sun. 2016. Effect of temperature and moisture on degradation of herbicide atrazine in agricultural soil. International Journal of Agriculture and Environmental Research 2 : 150-157.
  10. Dukes, J. S. and H. A. Mooney. 1999. Does Global Change Increase the Success of Biological Invaders? Trends in Ecology & Evolution 14 : 135-139. https://doi.org/10.1016/S0169-5347(98)01554-7
  11. Ganie, Z., M. Jugulam, and A. Jhala. 2017. Temperature influences efficacy, absorption, and translocation of 2,4-D or glyphosate in glyphosate-resistant and glyphosate-susceptible common ragweed (Ambrosia artemisiifolia) and giant ragweed (Ambrosia trifida). Weed Science 65(5) : 588-602. https://doi.org/10.1017/wsc.2017.32
  12. Hatfield, J. L., K. J. Boote, B. A. Kimball, L. H. Ziska, R. C. Izaurralde, D. R. Ort, A. M. Thomson, and D. Wolfe. 2011. Climate impacts on agriculture: implications for crop production. Agronomy Journal 103(2) : 351-370. https://doi.org/10.2134/agronj2010.0303
  13. Jang, S. J. and Y. I. Kuk. 2020. Occurrence distribution of an exotic plant Ipomoea hederacea and soybean growth and yield reductions caused by its occurrence densities. Research on Crops 20 : 76-81.
  14. Jang, S. J., D. J. Lee, and Y. I. Kuk. 2019. Soybean growth and yield reductions caused by Quamoclit coccinea at varying density. Research on Crops 20 : 301-305. https://doi.org/10.31830/2348-7542.2019.044
  15. Johnson, B. C. and B. G. Young. 2002. Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Science 50(2) : 157-161. https://doi.org/10.1614/0043-1745(2002)050[0157:IOTARH]2.0.CO;2
  16. Kudsk, P. and J. L. Kristensen. 1992. Effect of Environmental Factors on Herbicide Performance. In Proceedings of the First International Weed Control Congress. Victoria, Australia: Weed Science Society of Victoria pp. 173-186.
  17. Lee, J. S. 2011. Combined effect of elevated CO2 and temperature on the growth and phenology of two annual C3 and C4 weedy species. Agriculture, Ecosystems & Environment 140 : 484-491. https://doi.org/10.1016/j.agee.2011.01.013
  18. Lobell, D. B., M. B. Burke, C. Tebaldi, M. D. Mastrandrea, W. P. Falcon, and R. L. Naylor. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863) : 607-610. https://doi.org/10.1126/science.1152339
  19. Lobell, D. B. and S. M. Gourdji. 2012. The influence of climate change on global crop productivity. Plant Physiology 160(4) : 1686-1697. https://doi.org/10.1104/pp.112.208298
  20. Long, S. P., E. A. Ainsworth., A. D. Leakey., J. Nosberger, and D. R. Ort. 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312(5782) : 1918-1921. https://doi.org/10.1126/science.1114722
  21. Long, Y. H., R. T. Li, and X. M. Wu. 2014. Degradation of S-metolachlor in soil as affected by environmental factors. Journal of Soil Science and Plant Nutrition 14 : 189-198. https://doi.org/10.4067/S0718-95162014005000015
  22. Manea, A., M. R. Leishman, and P. O. Downey. 2011. Exotic C4 grasses have increased tolerance to glyphosate under elevated carbon dioxide. Weed Science 59 : 28-36. https://doi.org/10.1614/WS-D-10-00080.1
  23. Matzrafi, M., B. Seiwert, T. Reemtsma, B. Rubin, and Z. Peleg. 2016. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification. Planta 244 : 1217-1227. https://doi.org/10.1007/s00425-016-2577-4
  24. Nguyen, T., A. A. Bajwa, S. Navie, C. O'donnell, and S. Adkins. 2017. Parthenium weed (Parthenium hysterophorus L.) and climate change: the effect of CO2 concentration, temperature, and water deficit on growth and reproduction of two biotypes. Environmental Science and Pollution Research 24 : 10727-10739. https://doi.org/10.1007/s11356-017-8737-7
  25. Pline, W. A., J. Wu, and K. K. Hatzios. 1999. Effects of temperature and chemical additives on the response of transgenic herbicide-resistant soybeans to glufosinate and glyphosate applications. Pesticide Biochemistry and Physiology 65(2) : 119-131. https://doi.org/10.1006/pest.1999.2437
  26. Ramesh, K., A. Matloob, F. Aslam, S. K. Florentine, and B. S. Chauhan. 2017. Weeds in a changing climate: vulnerabilities, consequences, and implications for future weed management. Frontiers in Plant Science 8 : 95.
  27. SAS (Statistical Analysis System). 2000. SAS/STAT Users Guid, Version 7. Statistical Analysis System Institute. Cary, NC, USA.
  28. Seneviratne, S., N. Nicholls, D. Easterling, C. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, X. Zhang, L. V. Alexander, S. Allen, G. Benito, T. Cavazos, J. Clague, D. Conway, P. M. Della-Marta, M. Gerber, S. Gong, B. N. Goswami, M. Hemer, C. Huggel, V. D. H. Bart, V. V. Kharin, A. Kitoh, A. M. G. Klein Tank, G. Li, S. J. Mason, W. McGuire, V. O. Geert Jan, B. Orlowsky, S. Smith, W. Thiaw, A. Velegrakis, P. Yiou, T. Zhang, T. Zhou, and F. W. Zwiers. 2012. Changes in climate extremes and their impacts on the natural physical environment. pp. 109-230.
  29. Song, S. B., J. S. Lee, J. R. Kang, J. Y. Ko, M. C. Seo, K. S. Woo, B. G. Oh, and M. H. Nam. 2009. The growth and yield of soybeen as affected by competitive density of Digitaria sanguinalis. Korean Journal of Weed Science 29(4) : 323-327.
  30. Song, S. B., J. S. Lee, J. R. Kang, J. Y. Ko, M. C. Seo, K. S. Woo, B. G. Oh, and M. H. Nam. 2010. The growth and yield of soybean as affected by competitive density of Cuscuta pentagona. Korean Journal of Weed Science 30 : 390-395. https://doi.org/10.5660/KJWS.2010.30.4.390
  31. Strachan, S. D., M. S. Casini, K. M. Heldreth, J. A. Scocas, S. J. Nissen, B. Bukun, R. B. Lindenmayer, D. L. Shaner, P. Westra, and G. Brunk. 2010. Vapor movement of synthetic auxin herbicides: aminocyclopyrachlor, aminocyclopyrachlormethyl ester, dicamba, and aminopyralid. Weed Science 58(2) : 103-108. https://doi.org/10.1614/WS-D-09-00011.1
  32. Varanasi, A., P. V. V. Prasad, and M. Jugulam. 2015. Impact of climate change factors on weeds and herbicide efficacy. Advances in Agronomy 135 : 107-146. https://doi.org/10.1016/bs.agron.2015.09.002
  33. Won, J. G., K. S. Jang, J. E. Hwang, O. H. Kwon, S. G. Jeon, and S. G. Park, 2011. Competitiveness and yield loss of red pepper by densities of Echinochloa crus-galli (L.) P. Beauv. and Chenopodium album L. Korean Journal of Weed Science 31(1) : 71-77. https://doi.org/10.5660/KJWS.2011.31.1.071
  34. Yoo, J. H., B. C. Moon, I. Y. Lee, and D. H. Kim. 2012. Effect of Acalypha australis occurrence on soybean growth and economic threshold level of Acalypha australis. Weed & Turfgrass Science 1(4) : 13-17 https://doi.org/10.5660/WTS.2012.1.4.013
  35. Ziska, L. H., D. M. Blumenthal, G. B. Runion, and E. R. Hunt. 2011. Invasive species and climate change: an agronomic perspective. Climatic Change 105 : 13-42. https://doi.org/10.1007/s10584-010-9879-5
  36. Ziska, L. H. and L. L. McConnell. 2016. Climate change, carbon dioxide, and pest biology: monitor, mitigate, manage. Journal of Agricultural and Food Chemistry 64(1) : 6-12. https://doi.org/10.1021/jf506101h
  37. Ziska, L. H., S. S. Faulkner, and J. Lydon. 2004. Changes in biomass and root: shoot ratio of field-grown Canada thistle (Cirsium arvense), anoxious, invasive weed, with elevated CO2: implications for control with glyphosate. Weed Science 52 : 584-588. https://doi.org/10.1614/WS-03-161R
  38. Ziska, L. H. and J. R. Teasdale. 2000. Sustained growth and increased tolerance to glyphosate observed in a C3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Australian Journal of Plant Physiology 27 : 159-164.