DOI QR코드

DOI QR Code

갈색종피와 녹색자엽 및 Tetra Null 유전자형을 가진 콩 계통 선발

Selection of a Soybean Line with Brown Seed Coat, Green Cotyledon, and Tetra-Null Genotype

  • 리사랏 (경상국립대학교 농업생명과학대학 응용생명과학부) ;
  • 오현수 (경상국립대학교 농업생명과학대학 응용생명과학부) ;
  • 김세영 (경상국립대학교 농업생명과학대학 응용생명과학부) ;
  • 이정환 (경상국립대학교 농업생명과학대학 응용생명과학부) ;
  • 정종일 (경상국립대학교 농업생명과학대학 농학과)
  • Sarath Ly (Department of Agronomy, Gyeongsang National University) ;
  • Hyeon Su Oh (Department of Agronomy, Gyeongsang National University) ;
  • Se Yeong Kim (Department of Agronomy, Gyeongsang National University) ;
  • Jeong Hwan Lee (Department of Agronomy, Gyeongsang National University) ;
  • Jong Il Chung (Department of Agronomy, Gyeongsang National University)
  • 투고 : 2023.07.19
  • 심사 : 2023.07.26
  • 발행 : 2023.09.01

초록

갈색종피와 녹색자엽을 가진 품종 및 유전자원의 성숙 종실에는 눈 건강에 유익한 루테인 성분과 항산화 효과를 가진 플라보노이드 성분이 많이 함유되어져 있다. 그러나, 렉틴, 7S α′ subunit, 리폭시게나제 및 쿠니츠 트립신 억제제(KTI) 단백질 같은 항영양 성분이 존재한다. 이러한 항영양 성분을 불활성화시키기 위하여 콩 식품 제조 및 가공시 고온 및 첨가제 처리가 필요하지만 여러 가지 단점이 수반된다. 따라서, 갈색종피와 녹색자엽이면서 성숙 종실에서 렉틴, 7S α′ subunit, 리폭시게나제 및 KTI의 4가지 단백질이 모두 부재한 tetra null 유전자형(lecgy1lox1lox2lox3ti)을 가진 계통을 선발하기 위하여 본 연구가 진행되었다. 4개의 품종과 1개의 유전자원을 이용하여 육종집단 창성을 위한 두 모본이 선발되었다. 전체 58개의 F2 식물체로부터 DNA 마커를 이용하여 lele 유전자형을 가진 개체가 선발된 후 갈색종피와 녹색 자엽이면서 7S α′ subunit 단백질이 부재한 F3 종자가 선발되었다. 선발된 F3 종자는 F3 식물체를 거쳐 3개의 계통으로 육성되었다. 3개의 선발 계통(S1, S2, S3)에 대하여 F6 종자에서 렉틴, 7S α′ subunit, 리폭시게나제 및 KTI의 4가지 단백질에 대한 유전적 부재가 검정되었다. 3개의 선발 계통은 갈색종피, 녹색자엽 및 흰색배꼽을 가지고 있으며 백립중은 26.4-30.9 g으로 대조품종인 '청자3호'의 36.0 g보다 작았다. S2 선발 계통은 백립중이 30.9 g으로 대립이며 콩에서 항영양성분으로 알려진 lectin, 7S α′ subunit, lipoxygenase 및 KTI의 4가지 단백질 모두 부재한 유색콩 품종육성을 위한 중간모본으로 이용될 수 있을 것으로 사료되었다.

Soybean is the one of the most important crops for providing quality vegetable protein to umans and livestock. Soybean cultivars with a brown seed coat have a wide range of antioxidant benefits because of the flavonoid components. However, they also contain lectin, 7S α′ subunit, lipoxygenase, and Kunitz trypsin inhibitor (KTI) proteins that can be allergenic and digestive inhibitors and reduce processing aptitude. Genetic removal of these four proteins is necessary in soybean breeding. Therefore, this study was conducted to select a new line with brown seed coat, green cotyledon, and tetra-null genotype (lecgy1lox1lox2lox3ti) for lectin, 7S α′ subunit, lipoxygenase, and KTI proteins in the mature seed. Five germplasms were used to create breeding population. From a total of 58 F2 plants, F2 plants with lele genotype were selected using a DNA marker, and F3 seeds with a brown seed coat, green cotyledon, and the absence of 7S α′ subunit protein were selected. Three lines (S1, S2, and S3) were developed. Genetic absence of lectin, 7S α′ subunit, lipoxygenase, and KTI proteins was confirmed in F6 seeds of the three lines, which had a brown seed coat, green cotyledons, and a white hilum. The 100 seed weights of the three lines were 26.4-30.9 g, which were lower than 36 g of the check cultivar - 'Chungja#3'. The new S2 line with 30.9 g hundred seed weight can be used as a parent to improve colored soybean cultivars without antinutritional factors such as lectin, 7S α′ subunit, lipoxygenase, and KTI proteins.

키워드

과제정보

본 연구는 교육부와 한국연구재단의 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 일부 지원을 받아 수행되었습니다.

참고문헌

  1. Bae, E. A. and G. S. Moon. 1997. A study on the antioxidative activities of Korean soybeans. Journal of the Korean Society of Food Science and Nutrition 26 : 203-208.
  2. Choi, S. W., S. J. Han, D. H. Kang, J. A. Kim, S. J. Lee, and J. I. Chung. 2017. Selection of low stachyose content of soybean line using rs2 gene marker. Korean J. Breed. Sci. 49(4) : 318-323. https://doi.org/10.9787/KJBS.2017.49.4.318
  3. Choi, S. W., W. G. Chae, G. Y. Kang, and J. I. Chung. 2021. Breeding of tetra null soybean (Glycine max) for lipoxygenase, kunitz trypsin inhibitor, lectin, and 7S α′ subunit proteins. Plant Breeding 140 : 123-129. https://doi.org/10.1111/pbr.12870
  4. Davies, C., J. Coates, and N. Nielsen. 1985. Inheritance and biochemical analysis of four electrophoretic variants of β-conglycinin from soybean. Theoretical and Applied Genetics 71 : 351-358. https://doi.org/10.1007/BF00252079
  5. Davies, C. and N. Nielsen. 1986. Genetic analysis of a null-allele for lipoxygenase-2 in Soybean. Crop Science 26 : 460-463. https://doi.org/10.2135/cropsci1986.0011183X002600030003x
  6. George, M., S. Bhide, R. Thengane, G. Hosseini, and J. Manjaya. 2008. Identification of low lectin mutants in soybean. Plant Breeding 127 : 150-153. https://doi.org/10.1111/j.1439-0523.2007.01449.x
  7. Hildebrand, D. and T. Hymowitz. 1982. Inheritance of lipoxygenase-1 activity in soybean seeds. Crop Science 22 : 851-853. https://doi.org/10.2135/cropsci1982.0011183X002200040036x
  8. Kitamura, K., C. Davies, S. Kaizuma, and N. C. Nielsen. 1983. Genetic analysis of a null-allele for lipoxygenase-3 in soybean seeds. Crop Science 23(5) : 924-927. https://doi.org/10.2135/cropsci1983.0011183X002300050026x
  9. Kitamura, K., C. Davies, and N. Nielsen. 1984. Inheritance of alleles for Cgy1 and Gy4 storage protein genes in soybean. Theoretical and Applied Genetics 68 : 253-257. https://doi.org/10.1007/BF00266899
  10. Kitamura, K. and N. Kaizuma. 1981. Mutant strains with low level of subunits of 7S globulin in soybean (Glycine max Merr.) seed. Japanese Journal of Breeding 31 : 353-359. https://doi.org/10.1270/jsbbs1951.31.353
  11. Krishnan, H. B., W. S. Kim, S. Jang, and M. S. Kerley. 2009. All three subunits of soybean β-conglycinin are potential food allergens. Journal of Agricultural and Food Chemistry 57 : 938-943. https://doi.org/10.1021/jf802451g
  12. Krogdahl, A. and H. Holm. 1981. Soybean proteinase inhibitors and human proteolytic enzymes: Selective inactivation of inhibitors by treatment with human gastric juice. The J. of Nutrition 111 : 2045-2051. https://doi.org/10.1093/jn/111.12.2045
  13. Kunitz, M. 1945. Crystallization of a trypsin inhibitor from soybean. Science 101(2635) : 668-669. https://doi.org/10.1126/science.101.2635.668
  14. Kunitz, M. 1946. Crystalline soybean trypsin inhibitor. The Journal of General Physiology 29(3) : 149.
  15. Miyake, K., T. Tanaka, and P. L. McNeil. 2007. Lectin-based food poisoning: a new mechanism of protein toxicity. PloS One 2 : e687.
  16. Openshaw, S. J. and H. H. Hadley. 1978. Maternal effects on sugar content in soybean seeds. Crop Science 18 : 581-584. https://doi.org/10.2135/cropsci1978.0011183X001800040014x
  17. Orf, J. H., T. Hymowitz, S. P. Pull, and S. G. Pueppke. 1978. Inheritance of soybean seed lectin. Crop Science 18 : 899-900. https://doi.org/10.2135/cropsci1978.0011183X001800050058x
  18. Orf, J. H. and T. Hymowitz. 1979. Inheritance of the absence of the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Science 19 : 107-109. https://doi.org/10.2135/cropsci1979.0011183X001900010026x
  19. Pan, L., M. H. Farouk, G. Qin, Y. Zhao, and N. Bao. 2018. The influences of soybean agglutinin and functional oligosaccharides on the intestinal tract of monogastric animals. International Journal of Molecular Sciences 19 : 554.
  20. Pull, S. P., S. G. Pueppke, T. Hymowitz, and J. H. Orf. 1978. Soybean lines lacking the 120,000 Daltons seed lectin. Science 200 : 1277-1279. https://doi.org/10.1126/science.200.4347.1277
  21. Pusztai, A. and G. Grant. 1998. Assessment of lectin inactivation by heat and digestion. Methods in Molecular Medicine 9 : 505-514. https://doi.org/10.1385/0-89603-396-1:505
  22. Rackis, J. and M. Gumbmann. 1981. Protease inhibitors: physiological properties and nutritional significance. Antinutrients and Natural Toxicants in Foods. pp. 203-237.
  23. Rita, M. A., T. C. B. Soares, L. R. Colombo, M. F. S. Salla, J. G. Barros, N. D. Piovesan, E. G. Barros, and M. A. Moreira. 2006. Assisted selection by specific DNA markers for genetic elimination of the kunitz trypsin inhibitor and lectin in soybean seeds. Euphytica 149 : 221-226. https://doi.org/10.1007/s10681-005-9069-0
  24. Rogers, S. O. and A. J. Bendlich. 1994. Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin, S.B. and Schilperoort, R.A., Eds., Plant Molecular Biology Manual, 2nd Edition, Kluwer Academic Publishers, Dordrecht. pp. 1-8.
  25. Thanh, V. H., and K. Shibasaki. 1978. Major proteins of soybean seeds, reconstitution of β-conglycinin from its subunits. J. of Agric. Food Chem. 26 : 695-698. https://doi.org/10.1021/jf60217a027
  26. Tsukada, Y., K. Kitamura, K. Harada and N. Kaizuma. 1986. Genetic analysis of subunits of two major storage proteins (β-conglycinin and glycinin) in soybean seeds. Japanese Journal of Breeding 36 : 390-400. https://doi.org/10.1270/jsbbs1951.36.390
  27. Vasconcelos, I. M. and J. T. A. Oliveira. 2004. Antinutritional properties of plant lectins. Toxicon 44 : 385-403. https://doi.org/10.1016/j.toxicon.2004.05.005