DOI QR코드

DOI QR Code

Numerical investigation of swash-swash interaction driven by double dam-break using OpenFOAM

OpenFOAM을 활용한 포말대 이중 댐-붕괴 수치모형실험

  • Ok, Juhee (Department of Civil Engineering, Pukyong National University) ;
  • Kim, Yeulwoo (Department of Civil Engineering, Pukyong National University) ;
  • Marie-Pierre C. Delislec (Woods Hole Oceanographic Institution)
  • 옥주희 (부경대학교 토목공학과) ;
  • 김열우 (부경대학교 토목공학과) ;
  • Received : 2023.08.31
  • Accepted : 2023.09.19
  • Published : 2023.10.31

Abstract

This study aims to provide a better understanding of the turbulent flow characteristics in swash zone. A double dam-break method is employed to generate the swash zone flow. Comparing with the conventional single dam-break method, a delay between two gate opening can be controlled to reproduce various interactions between uprush and backwash. For numerical simulations, overInterDyMFoam based on OpenFOAM is adopted. Using overInterDyMFoam, interface between two immiscible fluids having different densities (i.e., air and water phases) can be tracked in a moving mesh with multiple layers. Two-dimensional Reynolds-Averaged Navier-Stokes equations are solved with a standard 𝜅-𝜖 turbulence model for momentum and continuity. Numerical model results are validated with laboratory experiment data for the time series of water depth and streamwise velocity. Turbulent kinetic energy distribution is further investigated to identify the turbulence evolution for each flow regime (i.e., uprush, backwash, and swash-swash interaction).

본 연구는 포말대 흐름의 난류특성에 대한 이해를 목표로 한다. 포말대 흐름을 재현하기 위해 이중 댐-붕괴 파랑생성법이 제시되었다. 기존 단일 댐-붕괴 실험과 비교하여 이중 댐-붕괴 실험은 두 개의 수문의 개방 시간을 조절하여 처오름과 처내림의 다양한 상호작용을 구현할 수 있다. 수치모형으로는 OpenFOAM의 overInterDyMFoam이 활용되었다. overInterDyMFoam은 밀도가 다른 두 유체(i.e., 공기, 물)의 경계면 추적기법과 동격자 및 중첩 격자 기법을 결합한 모형이다. 질량보존 및 운동량 방정식으로는 𝜅-𝜖 난류모형이 결합된 이차원 Reynolds-Averaged Navier-Stokes 모형이 채택되었다. 수치모형실험 결과는 수리모형실험의 수심 및 흐름 방향 유속 시계열과 비교하여 정확도가 검증되었다. 난류 운동 에너지 분포특성을 확인하여 각 흐름 단계(i.e., 처오름, 처내림, 흐름의 상호작용)의 난류 진화 특성을 고찰하였다.

Keywords

Acknowledgement

본 연구는 한국해양과학기술원 기관목적사업 "해양에너지지 및 항만·해양구조물 고도화 기술개발(PEA0131)" 과제, 2021년도 정부(교육부) 재원 한국연구재단 기초연구사업(NRF-2021R1F1A 1062223), 2021학년도 부경대학교의 지원(CD20210991)을 받아 수행되었습니다.

References

  1. Alsina, J.M., and Caceres, I. (2011). "Sediment suspension events in the inner surf and swash zone. Measurements in large-scale and high-energy wave conditions." Coastal Engineering, Vol. 58, pp. 657-670. https://doi.org/10.1016/j.coastaleng.2011.03.002
  2. Alsina, J.M., van der Zanden, J., Caceres, I., and Ribberink, J.S. (2018). "The influence of wave groups and wave-swash interactions on sediment transport and bed evolution in the swash zone." Coastal Engineering, Vol. 140, pp. 23-42. https://doi.org/10.1016/j.coastaleng.2018.06.005
  3. Bae, H., Do, K., Kim, I.H., and Chang, S. (2022). "Proposal of parameter range that offered optimal performance in the coastal morphodynamic model (XBeach) through GLUE." Journal of Ocean Engineering and Technology, Vol. 36, pp. 251-269. https://doi.org/10.26748/KSOE.2022.013
  4. Briganti, R., Torres-Freyermuth, A., Baldock, T.E., Brocchini, M., Dodd, N., Hsu, T.J., Jiang, Z., Kim, Y., Pintado-Patino, J.C., and Postacchini, M. (2016). "Advances in numerical modelling of swash zone dynamics." Coastal Engineering, Vol. 115, pp. 26-41. https://doi.org/10.1016/j.coastaleng.2016.05.001
  5. Butt, T., and Russell, P. (2000). "Hydrodynamics and cross-shore sediment transport in the swash-zone of natural beaches: A review." Journal of Coastal Research, Vol. 16, No. 2, pp. 255-268.
  6. Butt, T., and Russell, P. (2005). "Observations of hydraulic jumps in high-energy swash." Journal of Coastal Research, Vol. 21, pp. 1219-1227. https://doi.org/10.2112/04-0187.1
  7. Butt, T., Russell, P., Puleo, J.A., Miles, J., and Masselink, G. (2004). "The influence of bore turbulence on sediment transport in the swash and inner surf zones." Continental Shelf Research, Vol. 24, pp. 757-771. https://doi.org/10.1016/j.csr.2004.02.002
  8. Caceres, I., and Alsina, J.M. (2012). "A detailed, event-by-event analysis of suspended sediment concentration in the swash zone." Continental Shelf Research, Vol. 41, pp. 61-76. https://doi.org/10.1016/j.csr.2012.04.004
  9. Chandar, D.D.J. (2019). "On overset interpolation strategies and conservation on unstructured grids in OpenFOAM." Computer Physics Communications, Vol. 239, pp. 72-83. https://doi.org/10.1016/j.cpc.2019.01.009
  10. Chardon-Maldonado, P., Pintado-Patino, J.C., and Puleo, J.A. (2016). "Advances in swash-zone research: Small-scale hydrodynamic and sediment transport processes." Coastal Engineering, Vol. 115, pp. 8-25. https://doi.org/10.1016/j.coastaleng.2015.10.008
  11. Chen, H., Qian, L., Ma, Z., Bai, W., Li, Y., Causon, D., and Mingham, C. (2019). "Application of an overset mesh based numerical wave tank for modelling realistic free-surface hydrodynamic problems." Ocean Enginering, Vol. 176, pp. 97-117. https://doi.org/10.1016/j.oceaneng.2019.02.001
  12. Dai, H.-J., Kikkert, G.A., Chen, B.-T., and Pokrajac, D. (2017). "Entrained air in bore-driven swash on an impermeable rough slope." Coastal Engineering, Vol. 121, pp. 26-43. https://doi.org/10.1016/j.coastaleng.2016.10.002
  13. Deng, B., Zhang, W., Tang, H.S., Jiang, C.B., and Liu, X.J. (2022). "An experimental study on hydrodynamic process, beach profile, and sand migration in swash zone under action of dam-break bore." Applied Ocean Research, Vol. 129, 103391.
  14. Desombre, J., Morichon, D., and Mory, M. (2013). "RANS v2f simulation of a swash event: Detailed flow structure." Coastal Engineering, Vol. 71, pp. 1-12. https://doi.org/10.1016/j.coastaleng.2012.07.001
  15. Eley, M. (2022). Horizontal and vertical pore pressure gradients under double dam break driven swash event. Ph. D. Dissertation, University of Delaware, Newark, DE, U.S., pp. 1-86.
  16. Hai, V.D., Shin, S., Lee, E., Park, H., and Park, J.N. (2022). "Numerical investigation of countermeasure effects on overland flow hydrodynamic and force mitigation in coastal communities." Journal of Ocean Engineering and Technology, Vol. 36, No. 6, pp. 364-397. https://doi.org/10.26748/KSOE.2022.036
  17. Hirt, C.W., and Nichols, B.D. (1981). "Volume of fluid (VOF) method for the dynamics of free boundaries." Journal of Computational Physics, Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  18. Hughes, M.G., and Moseley, A.S. (2007). "Hydrokinematic regions within the swash zone." Continental Shelf Research, Vol. 27, pp. 2000-2013. https://doi.org/10.1016/j.csr.2007.04.005
  19. Hwang, Y., Do, K., Kim, I., and Chang, S. (2022). "Field observation and Quasi-3D numerical modeling of coastal hydrodynamic response to submerged structures." Journal of Ocean Engineering and Technology, Vol. 32, No. 2, pp. 68-79.
  20. Jasak, H., and Tukovic, Z. (2010). "Dynamic mesh handling in Open FOAM applied to fluid-structure interaction simulations." Proceedings of the V European Conference on Computational Fluid Dynamics, ECCOMAS CFD, Lisbon, Portugal, pp. 1-19.
  21. Kikkert, G.A., O'Donoghue, T., Pokrajac, D., and Dodd, N. (2012). "Experimental study of bore-driven swash hydrodynamics on impermeable rough slopes." Coastal Engineering, Vol. 60, pp. 149-166. https://doi.org/10.1016/j.coastaleng.2011.09.006
  22. Kim, Y., Zhou, Z., Hsu, T.J., and Puleo, J.A. (2017). "Large eddy simulation of dam-break-driven swash on a rough-planar beach." Journal of Geophysical Research: Oceans, Vol. 122, No. 2, pp. 1274-1296. https://doi.org/10.1002/2016JC012366
  23. Klostermann, J., Schaake, K., and Schwarze, R. (2013). "Numerical simulation of a single rising bubble by VOF with surface compression." International Journal for Numerical Methods in Fluids, Vol. 71, pp. 960-982. https://doi.org/10.1002/fld.3692
  24. Launder, B.E., and Sharma, B.I. (1974). "Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disk." Letters in Heat and Mass Transfer, Vol. 1, pp. 131-138.
  25. Launder, B.E., and Spalding, D.B. (1974). "The numerical computation of turbulent flows." Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  26. Lee, J., Jeong, Y.M., Kim, J.S., and Hur, D.S. (2022). "Analysis of hydraulic characteristics according to the cross-section changes in submerged rigid vegetation." Journal of Ocean Engineering and Technology, Vol. 36, No. 5, pp. 326-339. https://doi.org/10.26748/KSOE.2022.028
  27. Lin, P., and Liu, P.L.-F. (1998). "A numerical study of breaking waves in the surf zone." Journal of Fluid Mechanics, Vol. 359, pp. 239-264. https://doi.org/10.1017/S002211209700846X
  28. Lin, P., and Xu, W. (2005). "NEWFLUME: A numerical water flume for two-dimensional turbulent free surface flows." Journal of Hydraulic Research, Vol. 44, pp. 79-93. https://doi.org/10.1080/00221686.2006.9521663
  29. Longo, S., Petti, M., and Losada, I.J. (2002). "Turbulence in the swash and surf zones: A review." Coastal Engineering, Vol. 45, No. 3-4, pp. 129-147. https://doi.org/10.1016/S0378-3839(02)00031-5
  30. Masselink, G., and Hughes, M.G. (1998). "Field investigation of sediment transport in the swash zone." Continental Shelf Research, Vol. 18, pp. 1179-1199. https://doi.org/10.1016/S0278-4343(98)00027-2
  31. Masselink, G., and Puleo, J.A. (2006). "Swash-zone morphodynamics." Continental Shelf Research, Vol. 26, No. 5, pp. 661-680. https://doi.org/10.1016/j.csr.2006.01.015
  32. Masselink, G., Evans, D., Hughes, M.G., and Russell, P. (2005). "Suspended sediment transport in the swash zone of a dissipative beach." Marine Geology, Vol. 216, No. 2005, pp. 169-189. https://doi.org/10.1016/j.margeo.2005.02.017
  33. Mohammadi, B., and Pironneau, O. (1994). Analysis of the K-epsilon turbulence model. John Wiley and Sons, New York, NY, U.S.
  34. O'Donoghue, T., Pokrajac, D., and Hondebrink, L. (2010). "Laboratory and numerical study of dambreak-generated swash on impermeable slopes." Coastal Engineering, Vol. 57, pp. 513-530. https://doi.org/10.1016/j.coastaleng.2009.12.007
  35. Olney, C. (2022). Horizontal pressure gradient and bed shear stress under double dam-break driven swash. Ph. D. Dissertation, University of Delaware, Newark, DE, U.S., pp. 1-96.
  36. Park, I.R., Kim, K.S., Kim, J., and Van S.H. (2012). "Numerical investigation of the effects of turbulence intensity on dam-break flows." Ocean Enginering, Vol. 42, pp. 176-187. https://doi.org/10.1016/j.oceaneng.2012.01.005
  37. Petti, M., and Longo, S. (2001). "Turbulence experiments in the swash zone." Coastal Engineering, Vol. 43, pp. 1-24. https://doi.org/10.1016/S0378-3839(00)00068-5
  38. Pintado-Patino, J.C., Puleo, J.A., Krafft, D., and Torres-Freyermuth, A. (2021). "Hydrodynamics and sediment transport under a dam-break-driven swash: An experimental study." Coastal Engineering, Vol. 170, 103986.
  39. Puleo, J.A., and Torres-Freyermuth. A. (2016). "The second international workshop on swash-zone processes." Coastal Engineering, Vol. 115, pp. 1-7. https://doi.org/10.1016/j.coastaleng.2015.09.007
  40. Puleo, J.A., Beach, R.A., Holman, R.A., and Allen, J.S. (2000). "Swash zone sediment suspension and transport and the importance of bore induced turbulence." Journal of Geophysical Research, Vol. 105, No. C7, pp. 17021-17044.
  41. Puleo, J.A., Farhadzadeh, A., and Kobayashi, N. (2007). "Numerical simulation of swash zone fluid accelerations." Journal of Geophysical Research: Oceans, Vol. 112, C07007.
  42. Raubenheimer, B., Elgar, S., and Guza, R.T. (2004). "Observations of swash zone velocities: A note on friction coefficients." Journal of Geophysical Research, Vol. 109, No. C1. doi: 10.1029/2003JC001877.
  43. Salehi, S., and Nilsson, H. (2023). "A semi-implicit slip algorithm for mesh deformation in complex geometries, implemented in OpenFOAM." Computer Physics Communications, Vol. 287, 108703.
  44. Shih, T.-H., Zhu, J., and Lumley, J.L. (1996). "Calculation of wallbounded complex flows and free shear flows." International Journal for Numerical Methods in Fluids, Vol. 23, pp. 1133-1144. https://doi.org/10.1002/(SICI)1097-0363(19961215)23:11<1133::AID-FLD456>3.0.CO;2-A
  45. Son, B., and Do, K. (2021). "Optimization of SWAN wave model to improve the accuracy of winter storm wave prediction in the East Sea." Journal of Ocean Engineering and Technology, Vol. 35, pp. 273-286. https://doi.org/10.26748/KSOE.2021.019
  46. Volkner, S., Brunswig, J., and Rung, T. (2017). "Analysis of nonconservative interpolation techniques in overset grid finitevolume methods." Computers and Fluids, Vol. 148, pp. 39-55. https://doi.org/10.1016/j.compfluid.2017.02.010
  47. Willmott, C. (1981). "On the validation of models." Physical Geography, Vol. 2, pp. 184-194. https://doi.org/10.1080/02723646.1981.10642213
  48. Windt, C., Davidson, J., Akram, B., and Ringwood, J.V. (2018). "Performance assessment of the overset grid method for numerical wave tank experiments in the OpenFOAM environment." International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers, New York, NY, U.S., Vol. 51319, V010T09A006.
  49. Windt, C., Davidson, J., Chandar, D.D., Faedo, N., and Ringwood, J.V. (2020). "Evaluation of the overset grid method for control studies of wave energy converters in OpenFOAM numerical wave tanks." Journal of Ocean Engineering and Marine Energy, Vol. 6, No. 1, pp. 55-70. https://doi.org/10.1007/s40722-019-00156-5
  50. Ye, Z., and Zhao, X. (2017). "Investigation of water-water interface in dam break flow with a wet bed." Journal of Hydrology, Vol. 548, pp. 104-120. https://doi.org/10.1016/j.jhydrol.2017.02.055
  51. Zhang, Q., and Liu, P.L.-F. (2008). "A numerical study of swash flows generated by bores." Coastal Engineering, Vol. 55, pp. 1113-1134. https://doi.org/10.1016/j.coastaleng.2008.04.010