DOI QR코드

DOI QR Code

Evaluation of Characteristics of Ground Anchor Using Large Scale Laboratory Test

실규모 실험을 이용한 그라운드 앵커의 거동 특성 평가

  • Sangrae Lee (Safety Innovation & Disaster Prevention Research Division, Korea Expressway Corporation Research Institute) ;
  • Seunghwan Seol (Department of Urban Disaster Management Engineering, Kyonggi University)
  • Received : 2023.09.14
  • Accepted : 2023.10.24
  • Published : 2023.11.01

Abstract

Ground anchor has been widely used specially for maintaining stability on reinforced cut slope in expressway. While the durability of the ground anchors should be ensured over the service life. However, the long-term loss of tensile force has occurred in most of field-installed anchors. Main causes are not clearly identified and very few studies have been made for analyzing long-term behavior of ground anchor in slopes. In this study, full-scale model tests and long-term measurements were made to obtain the load-displacement data and identified the causes of the long-term behaviors of ground anchor. As a result, the bond strength decreases exponentially with increasing water-binder ratio. Especially, groundwater is the most influencing factor to the bond strength. In the long-term behavior, the load decreases sharply until the initial settlement stabilized, and thereafter the tension force decreases constantly.

그라운드 앵커 공법은 최근 깎기 비탈면과 교대 등의 보강을 목적으로 사용이 증가하고 있다. 그라운드 앵커는 구조물의 사용연한 이상의 내구성을 확보하여야 하지만 국내 고속도로에 시공된 대부분의 앵커에서 장기적인 긴장력 손실이 발생하여 안정성이 문제가 있는 것으로 나타났다. 본 연구에서는 실규모 모형실험을 통하여 긴장력 감소원인에 대한 분석을 수행하였다. 실험결과 물-결합재 비가 55%가 되는 시점부터 부착력의 감소현상이 나타났으며, 인장쐐기의 영향으로 강연선 파단강도의 14%의 감소현상이 나타났다. 지반강도, 앵커형식, 지하수의 유무에 따라 극한인발력이 차이를 보였으며, 특히 지하수의 유무는 그라우트의 강도 및 품질에 관여하여 앵커의 거동특성에 미치는 영향이 가장 높은 것으로 나타났다. 장기거동에서는 초기 정착이 안정되는 시점까지 급격하게 하중이 감소하다가 이후에는 일정하게 긴장력이 감소하는 것으로 나타났다.

Keywords

References

  1. British Standards Institution (1989), British Standard Code of Practice of Ground Anchorages, BS. 8081.
  2. Deutshe Industrie Normen (1976), Ground Anchorages Design, Construction and Testing, DIN, 4125.
  3. Federal Highway Administration (1990), Permanent Ground Anchors, FHWA-DP-90-068-003.
  4. ICE (2008), Ground anchorages and anchored structures in service, Proc. Int. Conf. Organised by the Institution of Civil Engineers (editor G S Littlejohn), Thomas Telford, London.
  5. Kim, N. K. (2003), Performance of tension and compression anchors in weathered soil, The Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 12, pp. 1138~1150 (in Korean). https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1138)
  6. Kim, J. H. (2016), Characteristics of Multi Load Transfer Ground Anchor System, Ph.D. Thesis, Kunkuk University (in Korean).
  7. Korea Expressway Corporation (2016), Investigation of application condition and making the performance improvement technique of permanent ground anchor, Korea Expressway Corporation Research Institute Report, KECRI-2016-59-534.9607 (in Korean).
  8. Korea Expressway Corporation (2012), Groundanchor Performance and Proof test guideline, Korea Expressway & Transportation Research Institute (in Korean).
  9. Lee, B. J. and Lee, J. K. (2015), Evaluation of loss of prestress force of tensile anchor by long term measurement, Journal of the Korean Geoencironmental Society, Vol. 16, No. 10, pp. 15~22 (in Korean). https://doi.org/10.14481/jkges.2015.16.10.15
  10. Lee, J. D., Choi, Y. G. and Bang, S. T. (2002), Pull out characteristics of compression ground anchors in granite soil, Proc. of Korean Geo-environmental Society, pp. 207~212 (in Korean).
  11. Post Tensioning Institute (2004), Recommendations for Prestressed Rock and Soil Anchors, 4th edition, Post-Tensioning Institute.
  12. Sabatini, P. J., Pas, D. G. and Bachus, R. C. (1999), Geotechnical engineering circular No, 4 ground anchors and anchored systems, FHWA-SA-99-015,Office of Bridge Technology Federal Highway Administration, Washington, D.C, pp. 6~28.