과제정보
This research was supported by the Cooperative Research Programs for Agriculture Science and Technology Development (PJ014934) from the Rural Development Administration.
참고문헌
- Han Y, Korban SS. 2021. Genetic and physical mapping of the apple genome. In The apple genome (pp. 131-168). Springer, Cham.
- Ritchie H, Rosado P, Roser M. 2020. Agricultural production. Published online at Our World in Data. https://ourworldindata.org/agricultural-production.
- Bowen JK, Mesarich CH, Bus VG, Beresford RM, Plummer KM, Templeton MD. 2011. Venturia inaequalis: the causal agent of apple scab. Mol. Plant Pathol. 12: 105-122. https://doi.org/10.1111/j.1364-3703.2010.00656.x
- Tian X, Zhang L, Feng S, Zhao Z, Wang X, Gao H. 2019. Transcriptome analysis of apple leaves in response to powdery mildew (Podosphaera leucotricha) infection. Int. J. Mol. Sci. 20: 2326.
- Johnson KB, Stockwell VO, van der Zwet T. 2002. Management of fire blight: a case study in microbial ecology. Annu. Rev. Phytopathol. 40: 1-30 https://doi.org/10.1146/annurev.phyto.40.012202.130819
- Pique N, Minana-Galbis D, Merino S, Tomas JM. 2015. Virulence factors of Erwinia amylovora: a review. Int. J. Mol. Sci. 16: 12836-12854. https://doi.org/10.3390/ijms160612836
- Norelli JL, Aldwinkle HS, Ostenson HA. 2000. "Fire blight" in Compendium of Stone Fruit Diseases, eds. Ogawa JM, Zehr EI, 2nd edition, APS Press, St. MN, USA.
- Cui Z, Huntley RB, Zeng Q, Steven B. 2021. Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora. ISME J. 15: 318-329. https://doi.org/10.1038/s41396-020-00784-y
- van der Zwet T, Orolaza-Halbrendt N, Zeller W. 2012. Fire blight: history, biology, and management. American Phytopathological Society, APS Press, St. Paul, MN, USA.
- Acimovic SG, Zeng Q, McGhee GC, Sundin GW, Wise JC. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Front. Plant Sci. 6: 16.
- Sholberg PL, Bedford KE, Haag P, Randall P. 2001. Survey of Erwinia amylovora isolates from British Columbia for resistance to bactericides and virulence on apple. Can. J. Plant Pathol. 23: 60-67. https://doi.org/10.1080/07060660109506910
- Whitehead SR, Wisniewski ME, Droby S, Abdelfattah A, Freilich S, Mazzola M. 2021. The apple microbiome: structure, function, and manipulation for improved plant health. In Korban SS (ed), The Apple Genome. Compendium of Plant Genomes. Springer, Cham.
- Bell TH, Hockett KL, Alcala-Briseno RI, Barbercheck M, Beattie GA, Bruns MA, et al. 2019. Manipulating wild and tamed phytobiomes: challenges and opportunities. Phytobiomes J. 3: 3-21. https://doi.org/10.1094/PBIOMES-01-19-0006-W
- Kaul S, Choudhary M, Gupta S, Dhar MK. 2021. Engineering host microbiome for crop improvement and sustainable agriculture. Front. Microbiol. 12: 635917.
- Cha J, Han S, Hong H-J, Cho H, Kim D, Kwon Y, et al. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10: 119-129. https://doi.org/10.1038/ismej.2015.95
- Chen QL, Ding J, Zhu D, Hu HW, Delgado-Baquerizo M, Ma YB, et al. 2020. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141: 107686.
- Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, et al. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79: 293-320. https://doi.org/10.1128/MMBR.00050-14
- Kim D, Cho G, Jeon C, Weller DM, Thomashow LS, Paulitz TC, et al. 2019. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10: 4802.
- Turner TR, James EK, Poole PS. 2013. The plant microbiome. Genome Biol. 14: 209.
- Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne, A. 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206: 1196-1206. https://doi.org/10.1111/nph.13312
- Sanchez-Canizares C, Jorrin B, Poole PS, Tkacz A. 2017. Understanding the holobiont: the interdependence of plants and their microbiome. Curr. Opin. Microbiol. 38: 188-196. https://doi.org/10.1016/j.mib.2017.07.001
- Wang NR, Haney CH. 2020. Harnessing the genetic potential of the plant microbiome. Biochemistry 42: 20-25. https://doi.org/10.1042/BIO20200042
- Chou SF, Horng JS, Liu CH, Gan B. 2018. Explicating restaurant performance: the nature and foundations of sustainable service and organizational environment. Int. J. Hosp. Manag. 72: 56-66. https://doi.org/10.1016/j.ijhm.2018.01.004
- Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, et al. 2015. The soil microbiome influences grapevine-associated microbiota. mBio 6: e02527-14.
- Abdelfattah A, Ruano-Rosa D, Cacciola SO, Li Destri Nicosia MG, Schena L. 2018. Impact of Bactrocera oleae on the fungal microbiota of ripe olive drupes. PLoS One 13: e0199403.
- Diskin S, Feygenberg O, Maurer D, Droby S, Prusky D, Alkan N. 2017. Microbiome alterations are correlated with occurrence of postharvest stem-end rot in mango fruit. Phytobiomes J. 1: 117-127. https://doi.org/10.1094/PBIOMES-05-17-0022-R
- Abdelfattah A, Wisniewski M, Droby S. Schena L. 2016. Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Hort. Res. 3: 16047.
- Lundberg AS, Said Stalsmeden A. 2001. Inhibition of PCR in presence of PNAs and some of their analogues. Mol. Cell. Probes. 15: 221-223.
- Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods 13: 581-583. https://doi.org/10.1038/nmeth.3869
- Murali A, Bhargava A, Wright ES. 2018. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6: 140.
- Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A. 2021. The plant endosphere world-bacterial life within plants. Environ. Microbiol. 23: 1812-1829. https://doi.org/10.1111/1462-2920.15240
- Massoni J, Bortfeld-Miller M, Widmer A, Vorholt JA. 2021. Capacity of soil bacteria to reach the phyllosphere and convergence of floral communities despite soil microbiota variation. Proc. Natl. Acad. Sci. USA 118: e2100150118.
- Kim SH, Cho G, Lee SI, Kim DR, Kwak YS. 2021. Comparison of bacterial community of healthy and Erwinia amylovora infected apples. Plant Pathol. J. 37: 396-403. https://doi.org/10.5423/PPJ.NT.04.2021.0062
- Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru JJ, et al. 2013. Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol. 13: 137.
- Sang MK, Shrestha A, Kim DY, Park K, Pak CH, Kim KD. 2013. Biocontrol of phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol. J. 29: 154-167. https://doi.org/10.5423/PPJ.OA.07.2012.0104