DOI QR코드

DOI QR Code

Dynamics of Bacterial Communities by Apple Tissue: Implications for Apple Health

  • Hwa-Jung Lee (Division of Applied Life Science (BK21Plus), Gyeongsang National University) ;
  • Su-Hyeon Kim (Division of Applied Life Science (BK21Plus), Gyeongsang National University) ;
  • Da-Ran Kim (Department of Plant Medicine, Research Institute of Life Science, Gyeongsang National University) ;
  • Gyeongjun Cho (Division of Agricultural Microbiology, National Institute of Agriculture Science, Rural Development Administration) ;
  • Youn-Sig Kwak (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
  • Received : 2023.05.08
  • Accepted : 2023.06.28
  • Published : 2023.09.28

Abstract

Herein, we explored the potential of the apple's core microbiota for biological control of Erwinia amylovora, which causes fire blight disease, and analyzed the structure of the apple's bacterial community across different tissues and seasons. Network analysis results showed distinct differences in bacterial community composition between the endosphere and rhizosphere of healthy apples, and eight taxa were identified as negatively correlated with E. amylovora, indicating their potential key role in a new control strategy against the pathogen. This study highlights the critical role of the apple's bacterial community in disease control and provides a new direction for future research in apple production. In addition, the findings suggest that using the composition of the apple's core taxa as a biological control strategy could be an effective alternative to traditional chemical control methods, which have been proven futile and environmentally harmful.

Keywords

Acknowledgement

This research was supported by the Cooperative Research Programs for Agriculture Science and Technology Development (PJ014934) from the Rural Development Administration.

References

  1. Han Y, Korban SS. 2021. Genetic and physical mapping of the apple genome. In The apple genome (pp. 131-168). Springer, Cham. 
  2. Ritchie H, Rosado P, Roser M. 2020. Agricultural production. Published online at Our World in Data. https://ourworldindata.org/agricultural-production. 
  3. Bowen JK, Mesarich CH, Bus VG, Beresford RM, Plummer KM, Templeton MD. 2011. Venturia inaequalis: the causal agent of apple scab. Mol. Plant Pathol. 12: 105-122.  https://doi.org/10.1111/j.1364-3703.2010.00656.x
  4. Tian X, Zhang L, Feng S, Zhao Z, Wang X, Gao H. 2019. Transcriptome analysis of apple leaves in response to powdery mildew (Podosphaera leucotricha) infection. Int. J. Mol. Sci. 20: 2326. 
  5. Johnson KB, Stockwell VO, van der Zwet T. 2002. Management of fire blight: a case study in microbial ecology. Annu. Rev. Phytopathol. 40: 1-30  https://doi.org/10.1146/annurev.phyto.40.012202.130819
  6. Pique N, Minana-Galbis D, Merino S, Tomas JM. 2015. Virulence factors of Erwinia amylovora: a review. Int. J. Mol. Sci. 16: 12836-12854.  https://doi.org/10.3390/ijms160612836
  7. Norelli JL, Aldwinkle HS, Ostenson HA. 2000. "Fire blight" in Compendium of Stone Fruit Diseases, eds. Ogawa JM, Zehr EI, 2nd edition, APS Press, St. MN, USA. 
  8. Cui Z, Huntley RB, Zeng Q, Steven B. 2021. Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora. ISME J. 15: 318-329.  https://doi.org/10.1038/s41396-020-00784-y
  9. van der Zwet T, Orolaza-Halbrendt N, Zeller W. 2012. Fire blight: history, biology, and management. American Phytopathological Society, APS Press, St. Paul, MN, USA. 
  10. Acimovic SG, Zeng Q, McGhee GC, Sundin GW, Wise JC. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Front. Plant Sci. 6: 16. 
  11. Sholberg PL, Bedford KE, Haag P, Randall P. 2001. Survey of Erwinia amylovora isolates from British Columbia for resistance to bactericides and virulence on apple. Can. J. Plant Pathol. 23: 60-67.  https://doi.org/10.1080/07060660109506910
  12. Whitehead SR, Wisniewski ME, Droby S, Abdelfattah A, Freilich S, Mazzola M. 2021. The apple microbiome: structure, function, and manipulation for improved plant health. In Korban SS (ed), The Apple Genome. Compendium of Plant Genomes. Springer, Cham. 
  13. Bell TH, Hockett KL, Alcala-Briseno RI, Barbercheck M, Beattie GA, Bruns MA, et al. 2019. Manipulating wild and tamed phytobiomes: challenges and opportunities. Phytobiomes J. 3: 3-21.  https://doi.org/10.1094/PBIOMES-01-19-0006-W
  14. Kaul S, Choudhary M, Gupta S, Dhar MK. 2021. Engineering host microbiome for crop improvement and sustainable agriculture. Front. Microbiol. 12: 635917. 
  15. Cha J, Han S, Hong H-J, Cho H, Kim D, Kwon Y, et al. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10: 119-129.  https://doi.org/10.1038/ismej.2015.95
  16. Chen QL, Ding J, Zhu D, Hu HW, Delgado-Baquerizo M, Ma YB, et al. 2020. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141: 107686. 
  17. Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, et al. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79: 293-320.  https://doi.org/10.1128/MMBR.00050-14
  18. Kim D, Cho G, Jeon C, Weller DM, Thomashow LS, Paulitz TC, et al. 2019. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10: 4802. 
  19. Turner TR, James EK, Poole PS. 2013. The plant microbiome. Genome Biol. 14: 209. 
  20. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne, A. 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206: 1196-1206.  https://doi.org/10.1111/nph.13312
  21. Sanchez-Canizares C, Jorrin B, Poole PS, Tkacz A. 2017. Understanding the holobiont: the interdependence of plants and their microbiome. Curr. Opin. Microbiol. 38: 188-196.  https://doi.org/10.1016/j.mib.2017.07.001
  22. Wang NR, Haney CH. 2020. Harnessing the genetic potential of the plant microbiome. Biochemistry 42: 20-25.  https://doi.org/10.1042/BIO20200042
  23. Chou SF, Horng JS, Liu CH, Gan B. 2018. Explicating restaurant performance: the nature and foundations of sustainable service and organizational environment. Int. J. Hosp. Manag. 72: 56-66.  https://doi.org/10.1016/j.ijhm.2018.01.004
  24. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, et al. 2015. The soil microbiome influences grapevine-associated microbiota. mBio 6: e02527-14. 
  25. Abdelfattah A, Ruano-Rosa D, Cacciola SO, Li Destri Nicosia MG, Schena L. 2018. Impact of Bactrocera oleae on the fungal microbiota of ripe olive drupes. PLoS One 13: e0199403. 
  26. Diskin S, Feygenberg O, Maurer D, Droby S, Prusky D, Alkan N. 2017. Microbiome alterations are correlated with occurrence of postharvest stem-end rot in mango fruit. Phytobiomes J. 1: 117-127.  https://doi.org/10.1094/PBIOMES-05-17-0022-R
  27. Abdelfattah A, Wisniewski M, Droby S. Schena L. 2016. Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Hort. Res. 3: 16047. 
  28. Lundberg AS, Said Stalsmeden A. 2001. Inhibition of PCR in presence of PNAs and some of their analogues. Mol. Cell. Probes. 15: 221-223. 
  29. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods 13: 581-583.  https://doi.org/10.1038/nmeth.3869
  30. Murali A, Bhargava A, Wright ES. 2018. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6: 140. 
  31. Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A. 2021. The plant endosphere world-bacterial life within plants. Environ. Microbiol. 23: 1812-1829.  https://doi.org/10.1111/1462-2920.15240
  32. Massoni J, Bortfeld-Miller M, Widmer A, Vorholt JA. 2021. Capacity of soil bacteria to reach the phyllosphere and convergence of floral communities despite soil microbiota variation. Proc. Natl. Acad. Sci. USA 118: e2100150118. 
  33. Kim SH, Cho G, Lee SI, Kim DR, Kwak YS. 2021. Comparison of bacterial community of healthy and Erwinia amylovora infected apples. Plant Pathol. J. 37: 396-403.  https://doi.org/10.5423/PPJ.NT.04.2021.0062
  34. Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru JJ, et al. 2013. Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol. 13: 137. 
  35. Sang MK, Shrestha A, Kim DY, Park K, Pak CH, Kim KD. 2013. Biocontrol of phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol. J. 29: 154-167. https://doi.org/10.5423/PPJ.OA.07.2012.0104