DOI QR코드

DOI QR Code

Influence of Isolation Temperature on Isolating Diverse Lactic Acid Bacteria from Kimchi and Cultural Characteristics of Psychrotrophs

  • Hye In Ko (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Chang Hee Jeong (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Se-Jin Park (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • So-Rim Kim (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Jong-Bang Eun (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • Tae-Woon Kim (Technology Innovation Research Division, World Institute of Kimchi)
  • Received : 2023.03.30
  • Accepted : 2023.05.02
  • Published : 2023.08.28

Abstract

Kimchi is a traditional Korean fermented vegetable that is stored and fermented at low temperatures. However, kimchi lactic acid bacteria (LAB) are typically isolated under mesophilic conditions, which may be inappropriate for isolating the diverse LAB. Therefore, this study investigated the suitable conditions for isolating various LAB from kimchi. Here, LAB were isolated from four kimchi samples using MRS, PES, and LBS media and varying isolation temperatures (30, 20, 10, and 5℃). Then, MRS was selected as the suitable medium for LAB isolation. A comparison of culture-dependent and culture-independent approaches indicated that 5℃ was not a suitable isolation temperature. Thus, the number and diversity of LAB were determined at 30, 20, and 10℃ using 12 additional kimchi samples to elucidate the effect of isolation temperature. With the exception of two samples, most samples did not substantially differ in LAB number. However, Leuconostoc gelidum, Leuconostoc gasicomitatum, Leuconostoc inhae, Dellaglioa algida, Companilactobacillus kimchiensis, Leuconostoc miyukkimchii, Leuconostoc holzapfelii, and Leuconostoc carnosum were isolated only at 10 and 20℃. The growth curves of these isolates, except Leu. holzapfelii and Leu. carnosum, showed poor growth at 30℃. This confirmed their psychrotrophic characteristics. In Weissella koreensis, which was isolated at all isolation temperatures, there was a difference in the fatty acid composition of membranes between strains that could grow well at 30℃ and those that could not. These findings can contribute to the isolation of more diverse psychrotrophic strains that were not well isolated under mesophilic temperatures.

Keywords

Acknowledgement

This work was supported by the World Institute of Kimchi (grant number KE2303-1), funded by the Ministry of Science and ICT.

References

  1. Jung JY, Lee SH, Jeon CO. 2014. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Appl. Microbiol. Biotechnol. 98: 2385-2393. https://doi.org/10.1007/s00253-014-5513-1
  2. Kim JY, Park SE, Kim EJ, Seo SH, Whon TW, Cho KM, et al. 2022. Long-term population dynamics of viable microbes in a closed ecosystem of fermented vegetables. Food Res. Int. 154: 111044.
  3. Lee ME, Jang JY, Lee JH, Park HW, Choi HJ, Kim TW. 2015. Starter cultures for kimchi fermentation. J. Microbiol. Biotechnol. 25: 559-568. https://doi.org/10.4014/jmb.1501.01019
  4. Lee SH, Whon TW, Roh SW, Jeon CO. 2020. Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches. Appl. Microbiol. Biotechnol. 104: 7731-7744. https://doi.org/10.1007/s00253-020-10804-8
  5. Lee JJ, Choi YJ, Lee MJ, Park SJ, Oh SJ, Yun YR, et al. 2020. Effects of combining two lactic acid bacteria as a starter culture on model kimchi fermentation. Food Res. Int. 136: 109591.
  6. Hong SP, Lee EJ, Kim YH, Ahn DU. 2016. Effect of fermentation temperature on the volatile composition of kimchi. J. Food Sci. 81: C2623-C2629. https://doi.org/10.1111/1750-3841.13517
  7. Pothakos V, Snauwaert C, De Vos P, Huys G, Devlieghere F. 2014. Psychrotrophic members of Leuconostoc gasicomitatum, Leuconostoc gelidum and Lactococcus piscium dominate at the end of shelf-life in packaged and chilled-stored food products in Belgium. Food Microbiol. 39: 61-67. https://doi.org/10.1016/j.fm.2013.11.005
  8. Shimodate K, Honda H. 2022. Isolation and identification of psychrotrophic lactic acid bacteria in godo, the traditional fermented soy food in Japan. J. Gen. Appl. Microbiol. 68: 219-224. https://doi.org/10.2323/jgam.2022.04.002
  9. Song HS, Lee SH, Ahn SW, Kim JY, Rhee JK, Roh SW. 2021. Effects of the main ingredients of the fermented food, kimchi, on bacterial composition and metabolite profile. Food Res. Int. 149: 110668.
  10. Lee D, Kim S, Cho J, Kim J. 2008. Microbial population dynamics and temperature changes during fermentation of kimjang kimchi. J. Microbiol. 46: 590-593. https://doi.org/10.1007/s12275-008-0156-5
  11. Kim EJ, Seo SH, Park SE, Lim YW, Roh SW, Son HS. 2020. Initial storage of kimchi at room temperature alters its microbial and metabolite profiles. LWT 134: 110160.
  12. Moon SH, Kim EJ, Kim EJ, Chang HC. 2018. Development of fermentation.storage mode for kimchi refrigerator to maintain the best quality of kimchi during storage. Korean J. Food Sci. Technol. 50: 44-54.
  13. Kim JY, Kim BS, Kim JH, Oh SI, Koo J. 2020. Development of dynamic model for real-time monitoring of ripening changes of kimchi during distribution. Foods 9: 1075.
  14. Nami Y, Bakhshayesh RV, Manafi M, Hejazi MA. 2019. Hypocholesterolaemic activity of a novel autochthonous potential probiotic Lactobacillus plantarum YS5 isolated from yogurt. LWT 111: 876-882. https://doi.org/10.1016/j.lwt.2019.05.057
  15. Yang S, Yan D, Zou Y, Mu D, Li X, Shi H, et al. 2021. Fermentation temperature affects yogurt quality: a metabolomics study. Food Biosci. 42: 101104.
  16. Baati H, Amdouni R, Gharsallah N, Sghir A, Ammar E. 2010. Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr. Microbiol. 60: 157-161. https://doi.org/10.1007/s00284-009-9516-6
  17. Chamkha M, Mnif S, Sayadi S. 2008. Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field. FEMS Microbiol. Lett. 283: 23-29. https://doi.org/10.1111/j.1574-6968.2008.01136.x
  18. Pothakos V, Snauwaert C, De Vos P, Huys G, Devlieghere F. 2014. Monitoring psychrotrophic lactic acid bacteria contamination in a ready-to-eat vegetable salad production environment. Int. J. Food Microbiol. 185: 7-16. https://doi.org/10.1016/j.ijfoodmicro.2014.05.009
  19. Lee KW, Shim JM, Park SK, Heo HJ, Kim HJ, Ham KS, et al. 2016. Isolation of lactic acid bacteria with probiotic potentials from kimchi, traditional Korean fermented vegetable. LWT 71: 130-137. https://doi.org/10.1016/j.lwt.2016.03.029
  20. Won SM, Chen S, Park KW, Yoon JH. 2020. Isolation of lactic acid bacteria from kimchi and screening of Lactobacillus sakei ADM14 with anti-adipogenic effect and potential probiotic properties. LWT 126: 109296.
  21. Lule V, Singh R, Behare P, Tomar SK. 2015. Comparison of exopolysaccharide production by indigenous Leuconostoc mesenteroides strains in whey medium. Asian J. Dairy Food Res. 34: 8-12. https://doi.org/10.5958/0976-0563.2015.00002.0
  22. Petrut S, Rusu E, Tudorache IS, Pelinescu D, Sarbu I, Stoica I, et al. 2019. Influence of various carbon sources on growth and biomass accumulation of some lactic acid bacteria strains. Rev. Chim. 70: 2434-2438. https://doi.org/10.37358/RC.19.7.7356
  23. Kim J, Kim JY, Kim MS, Roh SW, Bae JW. 2013. Lactobacillus kimchiensis sp. nov., isolated from a fermented food. Int. J. Syst. Evol. Microbiol. 63: 1355-1359. https://doi.org/10.1099/ijs.0.037572-0
  24. Lee SH, Park MS, Jung JY, Jeon CO. 2012. Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi. Int. J. Syst. Evol. Microbial. 62: 1098-1103. https://doi.org/10.1099/ijs.0.032367-0
  25. Raimondi S, Spampinato G, Candeliere F, Amaretti A, Brun P, Castagliuolo I, et al. 2021. Phenotypic traits and immunomodulatory properties of Leuconostoc carnosum isolated from meat products. Front. Microbiol. 12: 730827.
  26. Cooper RK, Collins EB. 1978. Influences of temperature on growth of Leuconostoc cremoris. J. Dairy Sci. 61: 1085-1088. https://doi.org/10.3168/jds.S0022-0302(78)83690-X
  27. Pothakos V, Nyambi C, Zhang BY, Papastergiadis A, De Meulenaer B, Devlieghere F. 2014. Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, on sweet bell pepper (SBP) simulation medium under different gas compositions. Int. J. Food Microbiol. 178: 120-129. https://doi.org/10.1016/j.ijfoodmicro.2014.03.012
  28. Vesela H, Dorotikova K, Duskova M, Furmancikova P, Sedo O, Kamenik J. 2022. The pork meat or the environment of the production facility? The effect of individual technological steps on the bacterial contamination in cooked hams. Microorganisms 10: 1106.
  29. Kim E, Cho EJ, Yang SM, Kim MJ, Kim HY. 2021. Novel approaches for the identification of microbial communities in kimchi: MALDI-TOF MS analysis and high-throughput sequencing. Food Microbiol. 94: 103641.
  30. Salotra P, Singh DK, Seal KP, Krishna N, Jaffe H, Bhatnagar R. 1995. Expression of DnaK and GroEL homologs in Leuconostoc mesenteroides in response to heat shock, cold shock or chemical stress. FEMS Microbiol. Lett. 131: 57-62. https://doi.org/10.1111/j.1574-6968.1995.tb07754.x
  31. Wang D, Chen G, Tang Y, Li H, Shen W, Wang M, et al. 2020. Effects of temperature on paocai bacterial succession revealed by culture-dependent and culture-independent methods. Int. J. Food Microbiol. 317: 108463.
  32. Makela PM, Korkeala HJ. 1992. The ability of the ropy slime-producing lactic acid bacteria to form ropy colonies on different culture media and at different incubation temperatures and atmosphere. Int. J. Food Microbiol. 16: 161-166. https://doi.org/10.1016/0168-1605(92)90010-Z
  33. Lee DA, Collins EB. 1976. Influences of temperature on growth of Streptococcus cremoris and Streptococcus lactis. J. Dairy Sci. 59: 405-409. https://doi.org/10.3168/jds.S0022-0302(76)84220-8
  34. Adamberg K, Kask S, Laht TM, Paalme T. 2003. The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. Int. J. Food Microbiol. 85: 171-183. https://doi.org/10.1016/S0168-1605(02)00537-8
  35. Lu Y, Tan X, Lv Y, Yang G, Chi Y, He Q. 2020. Physicochemical properties and microbial community dynamics during Chinese horse bean-chili-paste fermentation, revealed by culture-dependent and culture-independent approaches. Food Microbiol. 85: 103309.
  36. Kesmen Z, Yetiman AE, Gulluce A, Kacmaz N, Sagdic O, Cetin B, et al. 2012. Combination of culture-dependent and culture-independent molecular methods for the determination of lactic microbiota in sucuk. Int. J. Food Microbiol. 153: 428-435. https://doi.org/10.1016/j.ijfoodmicro.2011.12.008
  37. Nguyen DTL, Van Hoorde K, Cnockaert M, De Brandt E, De Bruyne K, Le BT, et al. 2013. A culture-dependent and-independent approach for the identification of lactic acid bacteria associated with the production of nem chua, a Vietnamese fermented meat product. Food Res. Int. 50: 232-240. https://doi.org/10.1016/j.foodres.2012.09.029
  38. Zhadyra S, Han X, Anapiyayev BB, Tao F, Xu P. 2021. Bacterial diversity analysis in Kazakh fermented milks Shubat and Ayran by combining culture-dependent and culture-independent methods. LWT 141: 110877.
  39. Nwachukwu U, George-Okafor U, Ozoani U, Ojiagu N. 2019. Assessment of probiotic potentials of Lactobacillus plantarum CS and Micrococcus luteus CS from fermented milled corn-soybean waste-meal. Sci. Afr. 6: e00183.
  40. Kim J, Lee MH, Kim MS, Kim GH, Yoon SS. 2022. Probiotic properties and optimization of gamma-aminobutyric acid production by Lactiplantibacillus plantarum FBT215. J. Microbiol. Biotechnol. 32: 783-791. https://doi.org/10.4014/jmb.2204.04029
  41. Min B, Kim K, Li V, Cho S, Kim H. 2020. Changes in cell membrane fatty acid composition of Streptococcus thermophilus in response to gradually increasing heat temperature. J. Microbiol. Biotechnol. 30: 739-748. https://doi.org/10.4014/jmb.1912.12053
  42. Shin Y, Kang CH, Kim W, So JS. 2019. Heat adaptation improved cell viability of probiotic Enterococcus faecium HL7 upon various environmental stresses. Probiotics Antimicrob. Proteins 11: 618-626. https://doi.org/10.1007/s12602-018-9400-4
  43. Alvarez-Ordonez A, Fernandez A, Lopez M, Arenas R, Bernardo A. 2008. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int. J. Food Microbiol. 123: 212-219. https://doi.org/10.1016/j.ijfoodmicro.2008.01.015
  44. Tlais AZA, Lemos Junior WJF, Filannino P, Campanaro S, Gobbetti M, Di Cagno R. 2022. How microbiome composition correlates with biochemical changes during sauerkraut fermentation: a focus on neglected bacterial players and functionalities. Microbiol. Spectr. 10: e0016822.
  45. Moore JF, DuVivier R, Johanningsmeier SD. 2021. Formation of γ-aminobutyric acid (GABA) during the natural lactic acid fermentation of cucumber. J. Food Compost. Anal. 96: 103711.
  46. Andreevskaya M, Jaaskelainen E, Johansson P, Ylinen A, Paulin L, Bjorkroth J, et al. 2018. Food spoilage-associated Leuconostoc, Lactococcus, and Lactobacillus species display different survival strategies in response to competition. Appl. Environ. Microbiol. 84: e00554-18.