참고문헌
- Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514. https://doi.org/10.1038/nrgastro.2014.66
- Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, et al. 2010. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 12: 758-773. https://doi.org/10.1111/j.1462-2920.2009.02119.x
- Pfeiler EA, Klaenhammer TR. 2007. The genomics of lactic acid bacteria. Trends Microbiol. 15: 546-553. https://doi.org/10.1016/j.tim.2007.09.010
- Vastano V, Capri U, Muscariello L, Marasco R, Sacco M. 2010. Lactobacillus plantarum adhesion and colonization: identification of adhesins and effects of intestinal environment on biofilm development. J. Biotechnol. 150: 518-519. https://doi.org/10.1016/j.jbiotec.2010.09.829
- Arief II, Budiman C, Jenie BS, Andreas E, Yuneni A. 2015. Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus. Benef. Microbes. 6: 603-613. https://doi.org/10.3920/BM2014.0064
- Bosch M, Mendez M, Perez M, Farran A, Fuentes MC, Cune J. 2012. Lactobacillus plantarum CECT7315 and CECT7316 stimulate immunoglobulin production after influenza vaccination in elderly. Nutr. Hosp. 27: 504-509.
- Adesulu-Dahunsi AT, Jeyaram K, Sanni AI, Banwo K. 2018. Production of exopolysaccharide by strains of Lactobacillus plantarum YO175 and OF101 isolated from traditional fermented cereal beverage. PeerJ. 6: e5326.
- Hariri M, Salehi R, Feizi A, Mirlohi M, Ghiasvand R, Habibi N. 2015. A randomized, double-blind, placebo-controlled, clinical trial on probiotic soy milk and soy milk: effects on epigenetics and oxidative stress in patients with type II diabetes. Genes Nutr. 10: 52.
- Zhang S, Wang T, Zhang D, Wang X, Zhang Z, Lim C, et al. 2022. Probiotic characterization of Lactiplantibacillus plantarum HOM3204 and its restoration effect on antibiotic-induced dysbiosis in mice. Lett. Appl. Microbiol. 74: 949-958. https://doi.org/10.1111/lam.13683
- Garcia-Gonzalez N, Battista N, Prete R, Corsetti A. 2021. Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms 9: 349.
- Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, et al. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100: 1990-1995. https://doi.org/10.1073/pnas.0337704100
- Jia FF, Zhang LJ, Pang XH, Gu XX, Abdelazez A, Liang Y, et al. 2017. Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Genomics 109: 432-437. https://doi.org/10.1016/j.ygeno.2017.06.008
- Kwak W, Kim K, Lee C, Lee C, Kang J, Cho K, et al. 2016. Comparative analysis of the complete genome of Lactobacillus plantarum GB-LP2 and potential candidate genes for host immune system enhancement. J. Microbiol. Biotechnol. 26: 684-692. https://doi.org/10.4014/jmb.1510.10081
- Sinha N, Dabla PK. 2015. Oxidative stress and antioxidants in hypertension-a current review. Curr. Hypertens. Rev. 11: 132-142. https://doi.org/10.2174/1573402111666150529130922
- Chandra J, Samali A, Orrenius S. 2000. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29: 323-333. https://doi.org/10.1016/S0891-5849(00)00302-6
- Dasgupta A, Klein K. 2014. Role of oxidative stress in neurodegenerative diseases and other diseases related to aging, pp. 167-184. In Dasgupta A, Klein K (eds.), Antioxidants in Food, Vitamins and Supplements, Ed. Elsevier, San Diego
- Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, et al. 2017. Antioxidant properties of probiotic bacteria. Nutrients 9: 521.
- Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J. 2015. Probiotics as potential antioxidants: a systematic review. J. Agric. Food Chem. 63: 3615-3626. https://doi.org/10.1021/jf506326t
- Duz M, DoĞan YN, DoĞan I. 2020. Antioxidant activitiy of Lactobacillus plantarum , Lactobacillus sake and Lactobacillus curvatus strains isolated from fermented Turkish Sucuk. An. Acad. Bras. Cienc. 92: e20200105.
- Han KJ, Lee JE, Lee NK, Paik HD. 2020. Antioxidant and anti-inflammatory effect of probiotic Lactobacillus plantarum KU15149 derived from Korean homemade diced-radish Kimchi. J. Microbiol. Biotechnol. 30: 591-598. https://doi.org/10.4014/jmb.2002.02052
- Zhao J, Tian F, Yan S, Zhai Q, Zhang H, Chen W. 2018. Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in d-galactose-induced aging mice. Food Funct. 9: 917-924. https://doi.org/10.1039/C7FO01574G
- Ge Q, Yang B, Liu R, Jiang D, Yu H, Wu M, et al. 2021. Antioxidant activity of Lactobacillus plantarum NJAU-01 in an animal model of aging. BMC Microbiol. 21: 182.
- Zhang J, Zhao X, Jiang Y, Zhao W, Guo T, Cao Y, et al. 2017. Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibetan kefir. J. Dairy Sci. 100: 6025-6041. https://doi.org/10.3168/jds.2016-12480
- Zhang Q, Li X, Cui X, Zuo P. 2005. D-galactose injured neurogenesis in the hippocampus of adult mice. Neurol. Res. 27: 552-556. https://doi.org/10.1179/016164105X25126
- Li F, Huang G, Tan F, Yi R, Zhou X, Mu J, et al. 2020. Lactobacillus plantarum KSFY06 on d-galactose-induced oxidation and aging in Kunming mice. Food Sci. Nutr. 8: 379-389. https://doi.org/10.1002/fsn3.1318
- Del Rio D, Stewart AJ, Pellegrini N. 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 15: 316-328. https://doi.org/10.1016/j.numecd.2005.05.003
- Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569. https://doi.org/10.1038/nmeth.2474
- Rhoads A, Au KF. 2015. PacBio sequencing and its applications. Genom Proteom. Bioinf. 13: 278-289. https://doi.org/10.1016/j.gpb.2015.08.002
- Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13: 1050-1054. https://doi.org/10.1038/nmeth.4035
- Miyamoto M, Motooka D, Gotoh K, Imai T, Yoshitake K, Goto N, et al. 2014. Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes. BMC Genomics 15: 699.
- Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. 2015. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol. 16: 294.
- Wang L, Wu Y, Xu J, Huang Q, Zhao Y, Dong S, et al. 2022. Colicins of Escherichia coli lead to resistance against the diarrhea-causing pathogen enterotoxigenic E. coli in pigs. Microbiol. Spectr. 10: e0139622.
- Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.
- Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12: 59-60. https://doi.org/10.1038/nmeth.3176
- Akhter S, Aziz RK, Edwards RA. 2012. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 40: e126.
- Winnenburg R, Baldwin TK, Urban M, Rawlings C, Kohler J, Hammond-Kosack KE. 2006. PHI-base: a new database for pathogen host interactions. Nucleic Acids Res. 34: D459-464. https://doi.org/10.1093/nar/gkj047
- Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45: D566-D573. https://doi.org/10.1093/nar/gkw1004
- Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233-238. https://doi.org/10.1093/nar/gkn663
- Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964. https://doi.org/10.1093/nar/25.5.955
- Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35: 3100-3108. https://doi.org/10.1093/nar/gkm160
- Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. 2003. Rfam: an RNA family database. Nucleic Acids Res. 31: 439-441. https://doi.org/10.1093/nar/gkg006
- Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19: 1639-1645. https://doi.org/10.1101/gr.092759.109
- Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. 2015. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 43: 6761-6771. https://doi.org/10.1093/nar/gkv657
- Zhang Z, Xiao J, Wu J, Zhang H, Liu G, Wang X, et al. 2012. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem. Biophys. Res. Commun. 419: 779-781. https://doi.org/10.1016/j.bbrc.2012.02.101
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
- Lin MY, Chang FJ. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sci. 45: 1617-1622. https://doi.org/10.1023/A:1005577330695
- Mahfouz N, Ferreira I, Beisken S, von Haeseler A, Posch AE. 2020. Large-scale assessment of antimicrobial resistance marker databases for genetic phenotype prediction: a systematic review. J. Antimicrob. Chemother. 75: 3099-3108. https://doi.org/10.1093/jac/dkaa257
- Cooper AL, Low AJ, Koziol AG, Thomas MC, Leclair D, Tamber S, et al. 2020. Systematic evaluation of whole genome sequence-based predictions of Salmonella serotype and antimicrobial resistance. Front. Microbiol. 11: 549.
- van den Nieuwboer M, van Hemert S, Claassen E, de Vos WM. 2016. Lactobacillus plantarum WCFS1 and its host interaction: a dozen years after the genome. Microb. Biotechnol. 9: 452-465. https://doi.org/10.1111/1751-7915.12368
- Ivanovic N, Minic R, Djuricic I, Radojevic Skodric S, Zivkovic I, Sobajic S, et al. 2016. Active Lactobacillus rhamnosus LA68 or Lactobacillus plantarum WCFS1 administration positively influences liver fatty acid composition in mice on a HFD regime. Food Funct. 7: 2840-2848. https://doi.org/10.1039/C5FO01432H
- Kullisaar T, Songisepp E, Aunapuu M, Kilk K, Arend A, Mikelsaar M, et al. 2010. Complete glutathione system in probiotic Lactobacillus fermentum ME-3. Prikl. Biokhim. Mikrobiol. 46: 527-531. https://doi.org/10.1134/S0003683810050030
- Valencia E, Marin A, Hardy G. 2001. Glutathione-nutritional and pharmacologic viewpoints: Part IV. Nutrition 17: 783-784. https://doi.org/10.1016/S0899-9007(01)00623-2