DOI QR코드

DOI QR Code

Whole Genome Sequence of Lactiplantibacillus plantarum HOM3204 and Its Antioxidant Effect on D-Galactose-Induced Aging in Mice

  • 투고 : 2022.09.14
  • 심사 : 2023.05.24
  • 발행 : 2023.08.28

초록

Lactiplantibacillus plantarum, previously named Lactobacillus plantarum, is a facultative, homofermentative lactic acid bacterium widely distributed in nature. Several Lpb. plantarum strains have been demonstrated to possess good probiotic properties, and Lpb. plantarum HOM3204 is a potential probiotic strain isolated from homemade pickled cabbage plants. In this study, whole-genome sequencing was performed to acquire genetic information and predict the function of HOM3204, which has a circular chromosome of 3,232,697 bp and two plasmids of 48,573 and 17,060 bp, respectively. Moreover, various oxidative stress-related genes were identified in the strain, and its antioxidant activity was evaluated in vitro and in vivo. Compared to reference strains, the intracellular cell-free extracts of Lpb. plantarum HOM3204 at a dose of 1010 colony-forming units (CFU)/ml in vitro exhibited stronger antioxidant properties, such as total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging rate, superoxide dismutase activity, and glutathione (GSH) content. Daily administration of 109 CFU Lpb. plantarum HOM3204 for 45 days significantly improved the antioxidant function by increasing the glutathione peroxidase activity in the whole blood and GSH concentration in the livers of D-galactose-induced aging mice. These results suggest that Lpb. plantarum HOM3204 can potentially be used as a food ingredient with good antioxidant properties.

키워드

참고문헌

  1. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514. https://doi.org/10.1038/nrgastro.2014.66
  2. Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, et al. 2010. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 12: 758-773. https://doi.org/10.1111/j.1462-2920.2009.02119.x
  3. Pfeiler EA, Klaenhammer TR. 2007. The genomics of lactic acid bacteria. Trends Microbiol. 15: 546-553. https://doi.org/10.1016/j.tim.2007.09.010
  4. Vastano V, Capri U, Muscariello L, Marasco R, Sacco M. 2010. Lactobacillus plantarum adhesion and colonization: identification of adhesins and effects of intestinal environment on biofilm development. J. Biotechnol. 150: 518-519. https://doi.org/10.1016/j.jbiotec.2010.09.829
  5. Arief II, Budiman C, Jenie BS, Andreas E, Yuneni A. 2015. Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus. Benef. Microbes. 6: 603-613. https://doi.org/10.3920/BM2014.0064
  6. Bosch M, Mendez M, Perez M, Farran A, Fuentes MC, Cune J. 2012. Lactobacillus plantarum CECT7315 and CECT7316 stimulate immunoglobulin production after influenza vaccination in elderly. Nutr. Hosp. 27: 504-509.
  7. Adesulu-Dahunsi AT, Jeyaram K, Sanni AI, Banwo K. 2018. Production of exopolysaccharide by strains of Lactobacillus plantarum YO175 and OF101 isolated from traditional fermented cereal beverage. PeerJ. 6: e5326.
  8. Hariri M, Salehi R, Feizi A, Mirlohi M, Ghiasvand R, Habibi N. 2015. A randomized, double-blind, placebo-controlled, clinical trial on probiotic soy milk and soy milk: effects on epigenetics and oxidative stress in patients with type II diabetes. Genes Nutr. 10: 52.
  9. Zhang S, Wang T, Zhang D, Wang X, Zhang Z, Lim C, et al. 2022. Probiotic characterization of Lactiplantibacillus plantarum HOM3204 and its restoration effect on antibiotic-induced dysbiosis in mice. Lett. Appl. Microbiol. 74: 949-958. https://doi.org/10.1111/lam.13683
  10. Garcia-Gonzalez N, Battista N, Prete R, Corsetti A. 2021. Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms 9: 349.
  11. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, et al. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100: 1990-1995. https://doi.org/10.1073/pnas.0337704100
  12. Jia FF, Zhang LJ, Pang XH, Gu XX, Abdelazez A, Liang Y, et al. 2017. Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Genomics 109: 432-437. https://doi.org/10.1016/j.ygeno.2017.06.008
  13. Kwak W, Kim K, Lee C, Lee C, Kang J, Cho K, et al. 2016. Comparative analysis of the complete genome of Lactobacillus plantarum GB-LP2 and potential candidate genes for host immune system enhancement. J. Microbiol. Biotechnol. 26: 684-692. https://doi.org/10.4014/jmb.1510.10081
  14. Sinha N, Dabla PK. 2015. Oxidative stress and antioxidants in hypertension-a current review. Curr. Hypertens. Rev. 11: 132-142. https://doi.org/10.2174/1573402111666150529130922
  15. Chandra J, Samali A, Orrenius S. 2000. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29: 323-333. https://doi.org/10.1016/S0891-5849(00)00302-6
  16. Dasgupta A, Klein K. 2014. Role of oxidative stress in neurodegenerative diseases and other diseases related to aging, pp. 167-184. In Dasgupta A, Klein K (eds.), Antioxidants in Food, Vitamins and Supplements, Ed. Elsevier, San Diego
  17. Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, et al. 2017. Antioxidant properties of probiotic bacteria. Nutrients 9: 521.
  18. Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J. 2015. Probiotics as potential antioxidants: a systematic review. J. Agric. Food Chem. 63: 3615-3626. https://doi.org/10.1021/jf506326t
  19. Duz M, DoĞan YN, DoĞan I. 2020. Antioxidant activitiy of Lactobacillus plantarum , Lactobacillus sake and Lactobacillus curvatus strains isolated from fermented Turkish Sucuk. An. Acad. Bras. Cienc. 92: e20200105.
  20. Han KJ, Lee JE, Lee NK, Paik HD. 2020. Antioxidant and anti-inflammatory effect of probiotic Lactobacillus plantarum KU15149 derived from Korean homemade diced-radish Kimchi. J. Microbiol. Biotechnol. 30: 591-598. https://doi.org/10.4014/jmb.2002.02052
  21. Zhao J, Tian F, Yan S, Zhai Q, Zhang H, Chen W. 2018. Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in d-galactose-induced aging mice. Food Funct. 9: 917-924. https://doi.org/10.1039/C7FO01574G
  22. Ge Q, Yang B, Liu R, Jiang D, Yu H, Wu M, et al. 2021. Antioxidant activity of Lactobacillus plantarum NJAU-01 in an animal model of aging. BMC Microbiol. 21: 182.
  23. Zhang J, Zhao X, Jiang Y, Zhao W, Guo T, Cao Y, et al. 2017. Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibetan kefir. J. Dairy Sci. 100: 6025-6041. https://doi.org/10.3168/jds.2016-12480
  24. Zhang Q, Li X, Cui X, Zuo P. 2005. D-galactose injured neurogenesis in the hippocampus of adult mice. Neurol. Res. 27: 552-556. https://doi.org/10.1179/016164105X25126
  25. Li F, Huang G, Tan F, Yi R, Zhou X, Mu J, et al. 2020. Lactobacillus plantarum KSFY06 on d-galactose-induced oxidation and aging in Kunming mice. Food Sci. Nutr. 8: 379-389. https://doi.org/10.1002/fsn3.1318
  26. Del Rio D, Stewart AJ, Pellegrini N. 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 15: 316-328. https://doi.org/10.1016/j.numecd.2005.05.003
  27. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569. https://doi.org/10.1038/nmeth.2474
  28. Rhoads A, Au KF. 2015. PacBio sequencing and its applications. Genom Proteom. Bioinf. 13: 278-289. https://doi.org/10.1016/j.gpb.2015.08.002
  29. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13: 1050-1054. https://doi.org/10.1038/nmeth.4035
  30. Miyamoto M, Motooka D, Gotoh K, Imai T, Yoshitake K, Goto N, et al. 2014. Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes. BMC Genomics 15: 699.
  31. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. 2015. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol. 16: 294.
  32. Wang L, Wu Y, Xu J, Huang Q, Zhao Y, Dong S, et al. 2022. Colicins of Escherichia coli lead to resistance against the diarrhea-causing pathogen enterotoxigenic E. coli in pigs. Microbiol. Spectr. 10: e0139622.
  33. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.
  34. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12: 59-60. https://doi.org/10.1038/nmeth.3176
  35. Akhter S, Aziz RK, Edwards RA. 2012. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 40: e126.
  36. Winnenburg R, Baldwin TK, Urban M, Rawlings C, Kohler J, Hammond-Kosack KE. 2006. PHI-base: a new database for pathogen host interactions. Nucleic Acids Res. 34: D459-464. https://doi.org/10.1093/nar/gkj047
  37. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45: D566-D573. https://doi.org/10.1093/nar/gkw1004
  38. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233-238. https://doi.org/10.1093/nar/gkn663
  39. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964. https://doi.org/10.1093/nar/25.5.955
  40. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35: 3100-3108. https://doi.org/10.1093/nar/gkm160
  41. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. 2003. Rfam: an RNA family database. Nucleic Acids Res. 31: 439-441. https://doi.org/10.1093/nar/gkg006
  42. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19: 1639-1645. https://doi.org/10.1101/gr.092759.109
  43. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. 2015. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 43: 6761-6771. https://doi.org/10.1093/nar/gkv657
  44. Zhang Z, Xiao J, Wu J, Zhang H, Liu G, Wang X, et al. 2012. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem. Biophys. Res. Commun. 419: 779-781. https://doi.org/10.1016/j.bbrc.2012.02.101
  45. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  46. Lin MY, Chang FJ. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sci. 45: 1617-1622. https://doi.org/10.1023/A:1005577330695
  47. Mahfouz N, Ferreira I, Beisken S, von Haeseler A, Posch AE. 2020. Large-scale assessment of antimicrobial resistance marker databases for genetic phenotype prediction: a systematic review. J. Antimicrob. Chemother. 75: 3099-3108. https://doi.org/10.1093/jac/dkaa257
  48. Cooper AL, Low AJ, Koziol AG, Thomas MC, Leclair D, Tamber S, et al. 2020. Systematic evaluation of whole genome sequence-based predictions of Salmonella serotype and antimicrobial resistance. Front. Microbiol. 11: 549.
  49. van den Nieuwboer M, van Hemert S, Claassen E, de Vos WM. 2016. Lactobacillus plantarum WCFS1 and its host interaction: a dozen years after the genome. Microb. Biotechnol. 9: 452-465. https://doi.org/10.1111/1751-7915.12368
  50. Ivanovic N, Minic R, Djuricic I, Radojevic Skodric S, Zivkovic I, Sobajic S, et al. 2016. Active Lactobacillus rhamnosus LA68 or Lactobacillus plantarum WCFS1 administration positively influences liver fatty acid composition in mice on a HFD regime. Food Funct. 7: 2840-2848. https://doi.org/10.1039/C5FO01432H
  51. Kullisaar T, Songisepp E, Aunapuu M, Kilk K, Arend A, Mikelsaar M, et al. 2010. Complete glutathione system in probiotic Lactobacillus fermentum ME-3. Prikl. Biokhim. Mikrobiol. 46: 527-531. https://doi.org/10.1134/S0003683810050030
  52. Valencia E, Marin A, Hardy G. 2001. Glutathione-nutritional and pharmacologic viewpoints: Part IV. Nutrition 17: 783-784. https://doi.org/10.1016/S0899-9007(01)00623-2