DOI QR코드

DOI QR Code

시뮬레이션 기반 PEM 수전해 시스템 고장 진단 모델 개발

Development of a Fault Diagnosis Model for PEM Water Electrolysis System Based on Simulation

  • 구태형 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 고락길 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 노현우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 서영민 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 하동우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 현대일 (국립공주대학교 미래자동차공학과) ;
  • 한재영 (국립공주대학교 미래자동차공학과)
  • TEAHYUNG KOO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • ROCKKIL KO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • HYUNWOO NOH (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • YOUNGMIN SEO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • DONGWOO HA (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • DAEIL HYUN (Department of Future Automotive Engineering, Kongju National University) ;
  • JAEYOUNG HAN (Department of Future Automotive Engineering, Kongju National University)
  • 투고 : 2023.09.25
  • 심사 : 2023.10.24
  • 발행 : 2023.10.30

초록

In this study, fault diagnosis and detection methods developed to ensure the reliability of polymer electrolyte membrane (PEM) hydrogen electrolysis systems have been proposed. The proposed method consists of model development and data generation of the PEM hydrogen electrolysis system, and data-driven fault diagnosis learning model development. The developed fault diagnosis learning model describes how to detect and classify faults in the sensors and components of the system.

키워드

과제정보

이 연구는 2023년도 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회의 지원을 받아 수행된 한국전기연구원 기본 사업임(No. 23A01043). 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(23A02119). 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과물임(2021RIS-004).

참고문헌

  1. A. Kazim and T. N. Veziroglu, "Utilization of solar-hydrogen energy in the UAE to maintain its share in the world energy market for the 21st century", Renewable Energy, Vol. 24, No. 2, 2001, pp. 259-274, doi: https://doi.org/10.1016/S0960-1481(00)00199-3. 
  2. S. A. Grigoriev, V. I. Porembsky, and V. N. Fateev, "Pure hydrogen production by PEM electrolysis for hydrogen energy", International Journal of Hydrogen Energy, Vol. 31, No. 2, 2006, pp. 171-175, doi: https://doi.org/10.1016/j.ijhydene.2005.04.038. 
  3. J. P. Masson, R. Molina, E. Roth, G. Gaussens, and F. Lemaire, "Obtention and evaluation of polyethylene-based solid polymer electrolyte membranes for hydrogen production", International Journal of Hydrogen Energy, Vol. 7, No. 2, 1982, pp. 167-171, doi: https://doi.org/10.1016/0360-3199(82)90143-4. 
  4. M. Kheirrouz, F. Melino, and M. A. Ancona, "Fault detection and diagnosis methods for green hydrogen production: a review", International Journal of Hydrogen Energy, Vol. 47, No. 65, 2022, pp. 27747-27774, doi: https://doi.org/10.1016/j.ijhydene.2022.06.115. 
  5. H. Kojima, K. Nagasawa, N. Todoroki, Y. Ito, T. Matsui, and R. Nakajima, "Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production", International Journal of Hydrogen Energy, Vol. 48, No. 12, 2023, pp. 4572-4593, doi: https://doi.org/10.1016/j.ijhydene.2022.11.018. 
  6. T. Wang, X. Cao, and L. Jiao, "PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects", Carbon Neutrality, Vol. 1, 2022, pp. 21, doi: https://doi.org/10.1007/s43979-022-00022-8. 
  7. S. S. Kumar and V. Himabindu, "Hydrogen production by PEM water electrolysis - a review", Materials Science for Energy Technologies, Vol. 2, No. 3, 2019, pp. 442-454, doi: https://doi.org/10.1016/j.mset.2019.03.002. 
  8. G. S. Ogumerem and E. N. Pistikopoulos, "Parametric optimization and control for a smart proton exchange membrane water electrolysis (PEMWE) system", Journal of Process Control, Vol. 91, 2020, pp. 37-49, doi: https://doi.org/10.1016/j.jprocont.2020.05.002. 
  9. U. Babic, M. Suermann, F. N. Buchi, L. Gubler, and T. J. Schmidt, "Critical review-identifying critical gaps for polymer electrolyte water electrolysis development", Journal of The Electrochemical Society, Vol. 164, No. 4, 2017, pp. F387, doi: https://doi.org/10.1149/2.1441704jes. 
  10. M. Chandesris, V. Medeau, N. Guillet, S. Chelghoum, D. Thoby, and F. Fouda-Onana, "Membrane degradation in PEM water electrolyzer: numerical modeling and experimental evidence of the influence of temperature and current density", International Journal of Hydrogen Energy, Vol. 40, No. 3, 2015, pp. 1353-1366, doi: https://doi.org/10.1016/j.ijhydene.2014.11.111. 
  11. A. Laconti, H. Liu, C. Mittelsteadt, and R. McDonald, "Polymer electrolyte membrane degradation mechanisms in fuel cells - findings over the past 30 years and comparison with electrolyzers", ECS Transactions, Vol. 1, No. 8, 2006, pp. 199, doi: https://doi.org/10.1149/1.2214554. 
  12. H. Ito, T. Maeda, A. Nakano, and H. Takenaka, "Properties of nafion membranes under PEM water electrolysis conditions", International Journal of Hydrogen Energy, Vol. 36, No. 17, 2011, pp. 10527-10540, doi: https://doi.org/10.1016/j.ijhydene.2011.05.127. 
  13. S. A. Grigoriev, K. A. Dzhus, D. G. Bessarabov, and P. Millet, "Failure of PEM water electrolysis cells: case study involving anode dissolution and membrane thinning", International Journal of Hydrogen Energy, Vol. 39, No. 35, 2014, pp. 20440-20446, doi: https://doi.org/10.1016/j.ijhydene.2014.05.043. 
  14. S. Oh, B. Hwang, M. Lee, D. Lee, and K. Park, "Comparison of hydrogen crossover current density by analysis method of linear sweep voltammetry (LSV) in proton exchange membrane fuel cells", Korean Chemical Engineering Research, Vol. 2018, Vol. 56, No. 2, pp. 151-155, doi: https://doi.org/10.9713/kcer.2018.56.2.151. 
  15. S. Oh, J. Kim, D. Lee, and K. Park, "Variation of hydrogen peroxide concentration during fenton reaction for test the membrane durability of PEMFC", Korean Chemical Engineer ing Research, Vol. 56, No. 3, 2018, pp. 315-319, doi: https://doi.org/10.9713/kcer.2018.56.3.315. 
  16. S. H. Oh, M. Lee, J. Yun, H. Lee, W. Kim, I. C. Na, and K. Park, "Durability evaluation of stationary PEMFC MEA by OCV holding method", Korean Chemical Engineering Research, Vol. 57, No. 3, 2019, pp. 344-350, doi: https://doi.org/10.9713/kcer.2019.57.3.344. 
  17. W. Y. Lee, M. Kim, H. Oh, Y. J. Sohn, and S. G. Kim, "A review on prognostics of polymer electrolyte fuel cells", Journal of Hydrogen and New Energy, Vol. 29, No. 4, 2018, pp. 339-356, doi: https://doi.org/10.7316/KHNES.2018.29.4.339. 
  18. H. Oh, W. Y. Lee, J. Won, M. Kim, Y. Y. Choi, and S. B. Han, "Residual-based fault diagnosis for thermal management systems of proton exchange membrane fuel cells", Applied Energy, Vol. 277, 2020, pp. 115568, doi: https://doi.org/10.1016/j.apenergy.2020.115568. 
  19. O. Prakash, S. Sood, M. Boukerdja, B. Ould-Bouamama, J. Y. Dieulot, A. L. Gehin, and M. Bressel, "A model-based prognosis approach to proton exchange membrane water electrolysis system", 2021 European Control Conference (ECC); 2021 Jun 29-Jul 2; Delft, Netherlands. New York: IEEE; c2021. pp. 2133-2138, doi: https://doi.org/10.23919/ECC54610.2021.9654858. 
  20. F. Aubras, C. Damour, M. Benne, S. Boulevard, M. Bessafi, B. Grondin-Perez, A. J. J. Kadjo, and J. Deseure, "A non-intrusive signal-based fault diagnosis method for proton exchange membrane water electrolyzer using empirical mode decomposition", Energies, Vol. 14, No. 15, 2021, pp. 4458, doi: https://doi.org/10.3390/en14154458. 
  21. B. Han, S. M. Steen III, J. Mo, and F. Y. Zhang, "Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy", International Journal of Hydrogen Energy, Vol. 40, No. 22, 2015, pp. 7006-7016, doi: https://doi.org/10.1016/j.ijhydene.2015.03.164.
  22. F. M. Nafchi, E. Afshari, E. Baniasadi, and N. Javani, "A parametric study of polymer membrane electrolyser performance, energy and exergy analyses", International Journal of Hydrogen Energy, Vol. 44, No. 34, 2019, pp. 18662-18670, doi: https://doi.org/10.1016/j.ijhydene.2018.11.081. 
  23. E. T. Ojong, J. T. H. Kwan, A. Nouri-Khorasani, A. Bonakdarpour, D. P. Wilkinson, and T. Smolinka, "Development of an experimentally validated semi-empirical fully-coupled performance model of a PEM electrolysis cell with a 3-D structured porous transport layer", International Journal of Hydrogen Energy, Vol. 42, No. 41, 2017, pp. 25831-25847, doi: https://doi.org/10.1016/j.ijhydene.2017.08.183. 
  24. S. Toghyani, S. Fakhradini, E. Afshari, E. Baniasadi, M. Y. A. Jamalabadi, and M. S. Shadloo, "Optimization of operating parameters of a polymer exchange membrane electrolyzer", International Journal of Hydrogen Energy, Vol. 44, No. 13, 2019, pp. 6403-6414, doi: https://doi.org/10.1016/j.ijhydene.2019.01.186. 
  25. V. Ruuskanen, J. Koponen, K. Huoman, A. Kosonen, M. Niemela, and J. Ahola, "PEM water electrolyzer model for a power-hardware-in-loop simulator", International Journal of Hydrogen Energy, Vol. 42, No. 16, 2017, pp. 10775-10784, doi: https://doi.org/10.1016/j.ijhydene.2017.03.046. 
  26. T. A. Zawodzinski Jr, M. Neeman, L. O. Sillerud, and S. Gottesfeld, "Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes", The Journal of Physical Chemistry, Vol. 95, No. 15, 1991, pp. 6040-6044, doi: https://doi.org/10.1021/j100168a060. 
  27. T. A. Zawodzinski, J. Davey, J. Valerio, and S. Gottesfeld, "The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes", Electrochimica Acta, Vol. 40, No. 3, 1995, pp. 297-302, doi: https://doi.org/10.1016/0013-4686(94)00277-8. 
  28. T. Yigit and O. F. Selamet, "Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system", International Journal of Hydrogen Energy, Vol. 41, No. 32, 2016, pp. 13901-13914, doi: https://doi.org/10.1016/j.ijhydene.2016.06.022. 
  29. F. Marangio, M. Santarelli, and M. Cali, "Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production", International Journal of Hydrogen Energy, Vol. 34, No. 3, 2009, pp. 1143-1158, doi: https://doi.org/10.1016/j.ijhydene.2008.11.083. 
  30. P. Medina and M. Santarelli, "Analysis of water transport in a high pressure PEM electrolyzer", International Journal of Hydrogen Energy, Vol. 35, No. 11, 2010, pp. 5173-5186, doi: https://doi.org/10.1016/j.ijhydene.2010.02.130. 
  31. B. S. Yang, C. H. Park, and H. J. Kim, "An efficient method of vibration diagnostics for rotating machinery using a decision tree", International Journal of Rotating Machinery, Vol. 6, No. 1, 2000, pp. 19-27, doi: https://doi.org/10.1155/S1023621X00000038. 
  32. J. Aubry, N. Y. Steiner, S. Morando, N. Zerhouni, and D. Hissel, "Fuel cell diagnosis methods for embedded automotive applications", Energy Reports, Vol. 8, 2022, pp. 6687-6706, doi: https://doi.org/10.1016/j.egyr.2022.05.036. 
  33. L. Zhao, X. Zheng, H. Yan, S. Wang, and K. Zhang, "Construction and application of the decision tree model for agricultural land grading based on MATLAB", 2009 Second International Workshop on Knowledge Discovery and Data Mining; 2009 Jan 23-25; Moscow, Russia. New York: IEEE, c2009, pp. 155-158, doi: https://doi.org/10.1109/WKDD.2009.9.