DOI QR코드

DOI QR Code

Characteristics of Carbon-Doped Mo Thin Films for the Application in Organic Thin Film Transistor

유기박막트랜지스터 응용을 위한 탄소가 도핑된 몰리브덴 박막의 특성

  • Dong Hyun Kim (Department of Electrical Engineering, Chosun University) ;
  • Yong Seob Park (Department of Electronics, Chosun College of Science and Technology)
  • Received : 2023.08.01
  • Accepted : 2023.09.25
  • Published : 2023.11.01

Abstract

The advantage of OTFT technology is that large-area circuits can be manufactured on flexible substrates using a low-cost solution process such as inkjet printing. Compared to silicon-based inorganic semiconductor processes, the process temperature is lower and the process time is shorter, so it can be widely applied to fields that do not require high electron mobility. Materials that have utility as electrode materials include carbon that can be solution-processed, transparent carbon thin films, and metallic nanoparticles, etc. are being studied. Recently, a technology has been developed to facilitate charge injection by coating the surface of the Al electrode with solution-processable titanium oxide (TiOx), which can greatly improve the performance of OTFT. In order to commercialize OTFT technology, an appropriate method is to use a complementary circuit with excellent reliability and stability. For this, insulators and channel semiconductors using organic materials must have stability in the air. In this study, carbon-doped Mo (MoC) thin films were fabricated with different graphite target power densities via unbalanced magnetron sputtering (UBM). The influence of graphite target power density on the structural, surface area, physical, and electrical properties of MoC films was investigated. MoC thin films deposited by the unbalanced magnetron sputtering method exhibited a smooth and uniform surface. However, as the graphite target power density increased, the rms surface roughness of the MoC film increased, and the hardness and elastic modulus of the MoC thin film increased. Additionally, as the graphite target power density increased, the resistivity value of the MoC film increased. In the performance of an organic thin film transistor using a MoC gate electrode, the carrier mobility, threshold voltage, and drain current on/off ratio (Ion/Ioff) showed 0.15 cm2/V·s, -5.6 V, and 7.5×104, respectively.

Keywords

References

  1. J. T. Mabeck and G. G. Malliaras, Anal. Bioanal. Chem., 384, 343 (2006). doi: https://doi.org/10.1007/s00216-005-3390-2 
  2. M. Wu, S. Hou, X. Yu, and J. Yu, J. Mater. Chem. C, 8, 13482 (2020). doi: https://doi.org/10.1039/D0TC03132A 
  3. D. Elkington, N. Cooling, W. Belcher, P. C. Dastoor, and X. Zhou, Electronics, 3, 234 (2014). doi: https://doi.org/10.3390/electronics3020234 
  4. M. Vilkman, T. Ruotsalainen, K. Solehmainen, E. Jansson, and J. Hiitola-Keinanen, Electronics, 5, 2 (2016). doi: https://doi.org/10.3390/electronics5010002 
  5. F. F. Vidor, T. Meyers, and U. Hilleringmann, Electronics, 4, 480 (2015). doi: https://doi.org/10.3390/electronics4030480 
  6. I. H. Campbell, P. S. Davids, J. P. Ferraris, T. W. Hagler, C. M. Heller, A. Saxena, and D. L. Smith, Synth. Met., 80, 105 (1996). doi: https://doi.org/10.1016/S0379-6779(96)03689-2 
  7. N. R. Tu and K. C. Kao, J. Appl. Phys., 85, 7267 (1999). doi: https://doi.org/10.1063/1.370543 
  8. W. A. Schoonveld, J. Vrijmoeth, and T. M. Klapwijk, Appl. Phys. Lett., 73, 3884 (1998). doi: https://doi.org/10.1063/1.122924 
  9. C. M. Hwller, I. H. Campbell, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, J. Appl. Phys., 81, 3227 (1997). doi: https://doi.org/10.1063/1.364154 
  10. J. H. Schon, Ch. Kloc, T. Siegrist, J. Laquindanum, and H. E. Katz, Org. Electron., 2, 165 (2001). doi: https://doi.org/10.1016/S1566-1199(01)00022-2 
  11. J. H. Schon, Ch. Kloc, and B. Batlogg, Synth. Met., 115, 75 (2000). doi: https://doi.org/10.1016/S0379-6779(00)00348-9 
  12. J. Robertson, Mater. Sci. Eng., 37, 129 (2002). doi: https://doi.org/10.1016/S0927-796X(02)00005-0 
  13. H. Dimigen, H. Hubsch, and R. Memming, Appl. Phys. Lett., 50, 1056 (1987). doi: https://doi.org/10.1063/1.97968 
  14. K. Bewilogua, C. V. Cooper, C. Specht, J. Schroder, R. Wittorf, and M. Grischke, Surf. Coat. Technol., 127, 223 (2000). doi: https://doi.org/10.1016/S0257-8972(00)00666-6 
  15. C. Lv, Z. Huang, Q. Yang, G. Wei, Z. Chen, M. G. Humphrey, and C. Zhang, J. Mater. Chem. A, 5, 22805 (2017). doi: https://doi.org/10.1039/C7TA06266D 
  16. V. Tvarozek, I. Novotny, P. Sutta, S. Flickyngerova, K. Schtereva, and E. Vavrinsky, Thin Solid Films, 515, 8756 (2007). doi: https://doi.org/10.1016/j.tsf.2007.03.125 
  17. V. Kulikovsky, P. Bohac, F. Franc, A. Deineka, V. Vorlicek, and L. Jastrabik, Diamond Relat. Mater., 10, 1076 (2001). doi: https://doi.org/10.1016/S0925-9635(00)00525-2 
  18. A. Grill, Surf. Coat. Technol., 94, 507 (1997). doi: https://doi.org/10.1016/S0257-8972(97)00458-1 
  19. A. Czyzniewski, Thin Solid Films, 433, 180 (2003). doi: https://doi.org/10.1016/S0040-6090(03)00324-9 
  20. G. Horowitz, Adv. Mater., 10, 365 (1998). doi: https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U 
  21. W. Tang, Y. Huang, L. Han, R. Liu, Y. Su, X. Guo, and F. Yan, J. Mater. Chem. C, 7, 790 (2019). doi: https://doi.org/10.1039/C8TC05485A 
  22. U. Zschieschang and H. Klauk, J. Mater. Chem. C, 7, 5522 (2019). doi: https://doi.org/10.1039/C9TC00793H 
  23. A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, L. McCulloch, and T. D. Anthopoulos, Adv. Mater., 30, 1801079 (2018). doi: https://doi.org/10.1002/adma.201801079 
  24. Z. A. Lamport, H. F. Haneef, S. Anand, M. Waldrip, and O. D. Jurchescu, J. Appl. Phys., 124, 071101 (2018). doi: https://doi.org/10.1063/1.5042255