DOI QR코드

DOI QR Code

Design and optimization of novel transceiver device for one-way single-wire power transfer

  • Yang Li (Tianjin Key Laboratory of New Energy Power Conversion, Transmission and Intelligent Control, Tianjin University of Technology) ;
  • Taocheng Hu (China Merchants Testing Vehicle Technology Research Institute Co., Ltd.) ;
  • Xueliang Wang (School of Electrical Engineering, Tiangong University) ;
  • Yujie Zhai (Tianjin Key Laboratory of New Energy Power Conversion, Transmission and Intelligent Control, Tianjin University of Technology) ;
  • Yao Li (School of Electrical Engineering, Tiangong University) ;
  • Wenxin Huang (School of Electrical Engineering, Tiangong University) ;
  • Zhigang Lou (School of Electrical Engineering, Tiangong University)
  • Received : 2022.08.18
  • Accepted : 2023.05.25
  • Published : 2023.10.20

Abstract

The further development of wireless power transfer technology is hindered by the limiting relationship between transmission distance, transmission efficiency, and size of the coupling mechanism. Thus, a feasible solution was provided by one-way single-wire power transfer. First, a horn-type mode conversion device was proposed in this study by analyzing the principle of one-way single-wire power transfer. Second, the system structure was designed to save materials and reduce the volume of space. The transmission efficiency of the system was improved, and the operating frequency was reduced by optimizing the parameters of the mode conversion device. Finally, the feasibility and structural applicability of the one-way single-wire power transfer method proposed in this study were proved by the experimental results.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (no. 51877151 and no. 52011530185) and the Tianjin Research Innovation Project for Postgraduate Students (no. 2022BKY152).

References

  1. Ahn, D., Hong, S.: Wireless power transmission with self-regulated output voltage for biomedical implant. IEEE Trans. Ind. Electron. 61(5), 2225-2235 (2014)  https://doi.org/10.1109/TIE.2013.2273472
  2. Xue, R.F., Cheng, K.W.: High-effciency wireless power transfer for biomedical implants by optimal resonant load transformation. IEEE Trans. Circuits Syst. I Regul. Pap. 60(4), 867-874 (2013)  https://doi.org/10.1109/TCSI.2012.2209297
  3. Geng, Y.Y., Yang, Z.P.: Optimization of dual side control strategy for wireless power transfer system in light rail vehicle. In: IEEE PELS Workshop on Emerging Technologies-Wireless Power (WoW), pp. 54-59 (2016) 
  4. Al-Attar, A., Attia, S.A.: Wireless power transfer for toys and portable devices. In: IEEE Conference on Power Electronics and Renewable Energy (IEEE CPERE), pp. 479-484 (2019) 
  5. Huang, K.B., Larsson, E.: Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Process. 61(23), 5972-5986 (2013)  https://doi.org/10.1109/TSP.2013.2281026
  6. De Santi, C., Meneghini, M.: GaN-based laser wireless power transfer system. Materials 11(1), 13 (2018) 
  7. Zhang, Q.Q., Fang, W.: Distributed laser charging: a wireless power transfer approach. IEEE Internet Things J. 5(5), 3853-3864 (2018)  https://doi.org/10.1109/JIOT.2018.2851070
  8. Jin, K., Zhou, W.Y.: Wireless laser power transmission: a review of recent progress. IEEE Trans. Power Electron. 34(4), 3842-3859 (2019)  https://doi.org/10.1109/TPEL.2018.2853156
  9. C. Bergsrud., J. Straub.: A space-to-space microwave wireless power transmission experiential mission using small satellites. Acta Astronautica. 103, 193-203 (2014)  https://doi.org/10.1016/j.actaastro.2014.06.033
  10. N.K. Singh.: Textile antenna for microwave wireless power transmission. Procedia Comput. Sci. 85, 856-861 (2016)  https://doi.org/10.1016/j.procs.2016.05.275
  11. Cummings, T., Janssen, J., Karnesky, J.: 6 GHz microwave power-beaming demonstration with 6-kV rectenna and ion-breeze thruster. In: AIP Conference Proceedings Second International Symposium on Beamed Energy Propulsion (2004) 
  12. Glaser, P.: Power from the sun. Its future. Science 162(11), 857-861 (1968)  https://doi.org/10.1126/science.162.3856.857
  13. Brown, W.: Status of the microwave power transmission components for the solar power satellite. IEEE Trans. Microw. Theory Tech. 29(12), 1319-1327 (1981)  https://doi.org/10.1109/TMTT.1981.1130559
  14. Edwards, B.C., Bennett, H.E.: Space elevator feasibility test using laser power beaming. Laser Beam Control Technol. 4632, 141-147 (2002)  https://doi.org/10.1117/12.469765
  15. Ke, J., Zhou, W.: Wireless laser power transmission: a review of recent progress. IEEE Trans. Power Electron. 34(4), 3842-3859 (2018) 
  16. Sample, A.P., Meyer, D.A., Smith, J.R.: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2), 544-554 (2011)  https://doi.org/10.1109/TIE.2010.2046002
  17. Sun, G.Q., Yang, Y., Zhang, J.P.: Modeling and optimization of pavement scale-model for magnetically coupled resonant in wireless power transmission systems. Constr. Build. Mater. 319, 126066 (2022) 
  18. Jonah, O., Georgakopoulos, S.V.: Wireless power transfer in concrete via strongly coupled magnetic resonance. IEEE Trans. Antennas Propag. 61(3), 1378-1384 (2013)  https://doi.org/10.1109/TAP.2012.2227924
  19. Dai, J.J., Ludois, D.C.: A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30(11), 6017-6029 (2015)  https://doi.org/10.1109/TPEL.2015.2415253
  20. Miller, J.M., Onar, O.C.: Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 147-162 (2015)  https://doi.org/10.1109/JESTPE.2014.2382569
  21. Vulfovich, A., Kolesnik, S., Baimel, D.: Output characteristics of none-series compensated inductive wireless power transfer link operating at load-independent-voltage-output frequency. Simul. Model. Pract. Theory. 115, 102424 (2022) 
  22. Markvart, A., Song, M.: Metasurface for near-field wireless power transfer with reduced electric field leakage. Inst. Electr. Electron. Eng. Inc. 8, 40224-40231 (2020) 
  23. Huang, L., Hu, A.P.: Z-impedance compensation for wireless power transfer based on electric field. IEEE Trans. Power Electron. 31(11), 7556-7563 (2016)  https://doi.org/10.1109/TPEL.2016.2557461
  24. Li, S.Q., Liu, Z.: Wireless power transfer by electric field resonance and its application in dynamic charging. IEEE Trans. Ind. Electron. 63(10), 6602-6612 (2016)  https://doi.org/10.1109/TIE.2016.2577625
  25. Tesla, N.: System of transmission of electrical energy. US645576 (1900) 
  26. Tesla, N.: Art of transmitting electrical energy through the natural mediums: US787412 (1905) 
  27. Tesla, N.: The true wireless. Electr. Exp. 2(05), 28-32 (1919) 
  28. Tesla, N.: World system of wireless transmission of energy. Telegr. Teleph. Age 20, 457-460 (1927) 
  29. Strebkov D S., Avramenko S V., Nekrasov A I.: Single-wire electric power system for renewable-based electric grid. New Energy Technol. 20-25 (2001). https://www.osti.gov/etdeweb/biblio/20195536 
  30. Leyh, G.E., Kennan, M.D.: Efficient wireless transmission of power using resonators with coupled electric fields 1-4 (2008). https://doi.org/10.1109/NAPS.2008.5307364. https://ieeexplore.ieee.org/document/5307364 
  31. Neste, C., Mahajan, S.M.: Wireless reactive power transfer for of-shore energy harvesting. 504-506 (2009). https://doi.org/10.1109/ICCEP.2009.5212003 
  32. Chen, X., Chen, J.: Electric-field-coupled single-wire power transmission-analytical model and experimental demonstration. In: 2017 International Symposium on Power Electronics (2017) 
  33. Chen, X., Lan, Y.: Single-wire power transmission using shorted high-voltage coupling coils. In: IECON 2020-46th Annual Conference of the IEEE Industrial Electronics Society (2020) 
  34. Chen, X., Li, T.: A single-wire power transfer system using lumped-parameter lc resonant circuits. In: 2020 IEEE 9th International Power Electronics and Motion Control Conference (2020) 
  35. Li, Y., Wang, R.: A novel single-wire power transfer method for wireless sensor networks. Energies 13(19), 5182 (2020) 
  36. Li, Y., Zhai, Y.J.: Single-wire power transfer method and verification. J. Power Electron. 22(4), 685-693 (2022)  https://doi.org/10.1007/s43236-022-00383-4
  37. Li, Y., Wang, X., Hu, T.: Design and optimization of one-way single-wire power transfer structure. Energies 15(18), 6701 (2022)