DOI QR코드

DOI QR Code

Particle swarm optimization of fuzzy PI control for PMSMs

  • Shijiao Wang (College of Field Engineering, Army Engineering University of PLA) ;
  • Chengming Jiang (College of Field Engineering, Army Engineering University of PLA) ;
  • Qunzhang Tu (College of Field Engineering, Army Engineering University of PLA) ;
  • Huidong Shu (College of Field Engineering, Army Engineering University of PLA) ;
  • Changlin Zhu (College of Field Engineering, Army Engineering University of PLA)
  • Received : 2022.12.05
  • Accepted : 2023.04.19
  • Published : 2023.10.20

Abstract

To solve the problems of the slow response speed and poor adaptive capability of a permanent magnet synchronous motor (PMSM) under a fuzzy PI control system, a particle swarm optimization (PSO) fuzzy PI method is proposed as a parameter optimization control scheme in this paper. The proportion factor and quantization factor in fuzzy PI control are optimized through the iteration of a PSO algorithm. In addition, the parameters of the PI control are intelligently adjusted through the fuzzy control. A simulation model is developed using MATLAB/Simulink, and an experimental platform is constructed to verify the proposed algorithm. Test results demonstrate that the fuzzy PI control optimized by PSO improves the convergence accuracy of a system and reduces the speed ring overshoot to a minimum. Furthermore, the PSO-optimized fuzzy PI control exhibits characteristics such as small torque ripple, strong anti-interference capability, and fast dynamic response.

Keywords

References

  1. Matsui, N.: Progresses for a Last Decade and Perspectives in Applications Specific Electric Motors and Drives in Japan. Power Conversion Conference - Nagoya, PCC '07 IEEE, K-17-K-24 (2007).
  2. Kaihui, Z., et al.: Sliding mode observer-based current sensor fault reconstruction and unknown load disturbance estimation for PMSM driven system. Sensors 17(12), 2833 (2017)
  3. Ghadiri, H., Khodadadi, H., Eijei, H., et al.: PSO based Takagi-Sugeno fuzzy PID controller design for speed control of permanent magnet synchronous motor. Facta Univer. Series Electron. Energet. 34(2), 203-217 (2021) https://doi.org/10.2298/FUEE2102203G
  4. Heidarpoor, S., Tabatabaei, M., Khodadadi, H.: Speed control of a DC motor using a fractional order sliding mode controller. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe, 1-4 (2017).
  5. Abassi, M., Khlaief, A., Saadaoui, O., et al: Perform-ance analysis of FOC and DTC for PMSM drives using SVPWM technique. Proceedings of the 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, 228-233 (2015).
  6. Deshpande, P.B., Ash, R.H.: Elements of computer process control, with advanced control applications. Instru. Soc. Am. 129(4), 143 (1981)
  7. Cao, F.: PID controller optimized by genetic algorithm for direct-drive servo system. Neural Comput. Appl. 32(1), 23-30 (2020) https://doi.org/10.1007/s00521-018-3739-z
  8. Jung, J.W., Leu, V.Q., Do, T.D., Kim, E.K., Choi, H.H.: Adaptive pid speed control design for permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 30(2), 900-908 (2014) https://doi.org/10.1109/TPEL.2014.2311462
  9. Javadi-Moghaddam, J., Bagheri, A.: An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle. Expert Syst. Appl. 37(1), 647-660 (2010) https://doi.org/10.1016/j.eswa.2009.06.015
  10. Lukichev, D. V., Demidova, G. L.: Speed control in PMSM drive with non-stif load and unknown parameters using PI- and fuzzy adaptive PID controllers. International Conference on Industrial Engineering. IEEE. 1-5 (2017).
  11. Qu, W., et al.: Research on pmsm fuzzy pi control system. Appl. Mech. Mater. 475, 628-634 (2013) https://doi.org/10.4028/www.scientific.net/AMM.475-476.628
  12. Wang, D., Li, T., Zhong, B.: Remodeling of fuzzy pid controller based on bp neural network, pp. 675-680. IEEE, New Jersey USA (2008)
  13. El-Sousy Fayez, F.M.: Intelligent optimal recurrent wavelet elman neural network control system for permanent-magnet synchronous motor servo drive. IEEE Trans. Indust. Informat. 9(4), 1986-2003 (2013) https://doi.org/10.1109/TII.2012.2230638
  14. Yang, Q., Zhao, N.N., Zhang, M.H.: Study on pmsm integral backstepping controller based on rbf neural network. Appl. Mech. Mater. 416, 599-605 (2013) https://doi.org/10.4028/www.scientific.net/AMM.416-417.599
  15. Salloom, T., Yu, X., He, W., Kaynak, O.: Adaptive neural network control of underwater robotic manipulators tuned by a genetic algorithm. J. Intell. Robot. Syst. 97, 657-672 (2019) https://doi.org/10.1007/s10846-019-01008-y
  16. Castillo, O., Melin, P.: A review on interval type-2 fuzzy logic applications in intelligent control. Informat. Sci. 279, 615-631 (2014) https://doi.org/10.1016/j.ins.2014.04.015
  17. Mahfouf, M., Chen, M. Y., Linkens, D. A.: Adaptive Weighted Particle Swarm Optimisation for Multi-objective Optimal Design of Alloy Steels. Parallel Problem Solving from Nature-ppsn Viii, International Conference, Birmingham, Uk. September. DBLP, 762-771 (2004)
  18. Yao, K.: Application of fuzzy pid control based on particle swarm optimization in the batching process. Measure. Cont. Technol. 34(11), 83-86 (2015)
  19. Ren, X., Yang, Y., Gao, L., Chen, J., Han, Q.: Research on Robot Tracking of Books Returning to Bookshelf Based on Particle Swarm Optimization Fuzzy PID Control. 2020 Chinese Control And Decision Conference, 2507-2511 (2020).
  20. Jiang, M., Wu, Y., Jiang, L., Li, F.: Particle swarm optimization algorithm based on natural selection and simulated annealing for pid controller parameters. Simulation Tools and Techniques: 11th International Conference, SIMUtools 2019, Chengdu, China, July 8-10, 2019, Proceedings 11. Springer International Publishing, 363-373 (2019).
  21. Wen, J.: PSO and GA designed pareto of fuzzy controller in ac motor drive. Intern. J. Cont. Automat. 6(5), 149-158 (2013) https://doi.org/10.14257/ijca.2013.6.5.14
  22. Li, N., Ming, Y., Gui, X., Xu, D.: A comparative study of model predictive current control and FOC for PMSM, pp. 3143-3147. IEEE, New Jersey USA (2015)
  23. Candelo-Zuluaga, C., Riba, J.: R, & Garcia, A: Pmsm parameter estimation for sensorless floc based on differential power factor. IEEE Trans. Instrum. Meas. 70, 1-12 (2021) https://doi.org/10.1109/TIM.2021.3096861
  24. Lei, Y., Hu, B., Wei, K., Chen, S.: Control principle and MATLAB simulation of modern permanent magnet synchronous motor, pp. 4-11. Beihang University Press, Beijing China (2016)
  25. Xu, Q., Zhang, C., Zhang, L., Wang, C.: Multiobjective optimization of pid controller of pmsm. J. Cont. Sci. Eng (2014). https://doi.org/10.1155/2014/471609
  26. Song, W.: Windowed least square algorithm based pmsm parameters estimation. Mathemat. Prob. Eng (2013). https://doi.org/10.1155/2013/131268
  27. Na, L.U., Long, M.A.: Quantum wolf pack evolutionary algorithm of weight decision-making based on fuzzy control. Chin. J. Electron. 31(4), 635-646 (2022) https://doi.org/10.1049/cje.2021.00.217
  28. Reznik, L., Ghanayem, O., Bourmistrov, A.: PID plus fuzzy controller structures as a design base for industrial applications. Eng. Appl. Artif. Intell. 13(4), 419-430 (2000) https://doi.org/10.1016/S0952-1976(00)00013-0
  29. Maripi, J.K.: An Effective Parallel Particle Swarm Optimization Algorithm and Its Performance Evaluation. Southern Illinois University at Carbondale (2010)
  30. Choi, H.H., Yun, H.M., Kim, Y.: Implementation of evolutionary fuzzy pid speed controller for pm synchronous motor. IEEE Trans. Indust. Inform. 11(2), 540-547 (2013) https://doi.org/10.1109/TII.2013.2284561