Acknowledgement
This work was supported in part by the research grant of the Gyeongsang National University in 2022, and in part by the Korea Evaluation Institute of Industrial Technology (KEIT, Korea) grant funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) (No. 20019073, High density power module & High power density power conversion technology development of Vehicle)
References
- Chan, C.C.: The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 95(4), 704-718 (2007) https://doi.org/10.1109/JPROC.2007.892489
- Aretxabaleta, I., De Alegria, I.M., Andreu, J., Kortabarria, I., Robles, E.: High-voltage stations for electric vehicle fast-charging: trends, standards, charging modes and comparison of unity power-factor rectifiers. IEEE Access 9, 102177-102194 (2021) https://doi.org/10.1109/ACCESS.2021.3093696
- Rafi, M.A.H., Bauman, J.: A comprehensive review of DC fast-charging stations with energy storage: architectures, power converters, and analysis. IEEE. Trans. Transport. Elect. 7(2), 345-368 (2021) https://doi.org/10.1109/TTE.2020.3015743
- Jung, C.: Power Up with 800-V systems: the benefits of upgrading voltage power for battery-electric passenger vehicles. IEEE. Elect. Mag. 5(1), 53-58 (2017) https://doi.org/10.1109/MELE.2016.2644560
- Aghabali, I., Bauman, J., Kollmeyer, P.J., Wang, Y., Bilgin, B., Emadi, A.: 800-V electric vehicle powertrains: review and analysis of benefits, challenges, and future trends. IEEE Trans. Transport. Elect. 7(3), 927-948 (2021) https://doi.org/10.1109/TTE.2020.3044938
- Williamson, S.S., Rathore, A.K., Musavi, F.: Industrial electronics for electric transportation: current state-of-the-art and future challenges. IEEE Trans. Industr. Electron. 62(5), 3021-3032 (2015) https://doi.org/10.1109/TIE.2015.2409052
- Rivera, S., et al.: Partial-power converter topology of type II for efficient electric vehicle fast charging. IEEE. J Emerg. Select. Top. Power. Elect. 10(6), 7839-7848 (2022) https://doi.org/10.1109/JESTPE.2021.3117910
- Sun, W., et al.: Analysis and design of a multi-resonant converter with a wide output voltage range for EV charger application. J. Power Elect. 17, 849-859 (2017)
- Mun, S.H., Choi, S.W., Hong, D.Y., et al.: Three-phase 11 kW on-board charger with single-phase reverse function. J. Power Electron. 22, 1255-1264 (2022) https://doi.org/10.1007/s43236-022-00457-3
- Safayatullah, M., Elrais, M.T., Ghosh, S., Rezaii, R., Batarseh, I.: A Comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications. IEEE Access 10, 40753-40793 (2022) https://doi.org/10.1109/ACCESS.2022.3166935
- Monteiro, V., Ferreira, J.C., Nogueiras Melendez, A.A., Couto, C., Afonso, J.L.: Experimental validation of a novel architecture based on a dual-stage converter for of-board fast battery chargers of electric vehicles. IEEE Trans. Veh. Technol.. 67, 1000-1011 (2018) https://doi.org/10.1109/TVT.2017.2755545
- Tu, H., Feng, H., Srdic, S., Lukic, S.: Extreme fast charging of electric vehicles: a technology overview. IEEE. Trans. Transport. Elect. 5(4), 861-878 (2019) https://doi.org/10.1109/TTE.2019.2958709
- Jegal, J.H., Kwon, M., Oh, C.Y., et al.: Implementation of three-phase four-leg inverter using SiC MOSFET for UPS applications. J. Power Electron. 21, 103-112 (2021) https://doi.org/10.1007/s43236-020-00173-w
- Kim, M.S., Lee, D.C.: Balancing control scheme of DC-link capacitor voltages for five-level hybrid T-type inverters without auxiliary circuit. J. Power Electron. 23, 467-477 (2023) https://doi.org/10.1007/s43236-023-00592-5
- Friedli, T., Hartmann, M., Kolar, J.W.: The essence of three-phase pfc rectifier systems part II. IEEE Trans. Power Electron. 29(2), 543-560 (2014) https://doi.org/10.1109/TPEL.2013.2258472
- Kolar, J.W., Friedli, T.: The essence of three-phase PFC rectifier systems part I. IEEE Trans. Power Electron. 28(1), 176-198 (2013) https://doi.org/10.1109/TPEL.2012.2197867
- Schweizer, M., Kolar, J.W.: Design and implementation of a highly efficient three-level T-type converter for low-voltage applications. IEEE Trans. Power Electron. 28(2), 899-907 (2013) https://doi.org/10.1109/TPEL.2012.2203151
- Kim, J., Naseem, N., Cha, H.: Automatic current balancing for two-phase interleaved LLC resonant converter. J. Power Electron. 23, 445-455 (2023) https://doi.org/10.1007/s43236-022-00583-y
- Kwon, Y.E., Ju, Y.W., Kim, D.U., et al.: Design of high efficiency phase-shift full-bridge converter with minimized power loss on primary-side clamp diodes. J. Power Electron. 23, 79-88 (2023) https://doi.org/10.1007/s43236-022-00554-3
- Kim, H., Park, J., Lee, J., Choi, S.: A simple modulation strategy for full zvs of single-stage electrolytic capacitor-less EV charger with universal Input. IEEE Trans. Power Electron. 37(10), 12030-12040 (2022) https://doi.org/10.1109/TPEL.2022.3165182
- Lee, G.-Y., Min, S.-S., Park, S.-S., Cho, Y.-C., Lee, S.-T., Kim, R.-Y.: Design and Parallel operation of 30 kW SiC MOSFET-based high frequency switching LLC converter with a wide voltage range for EV fast charger. Trans. Korean Inst. Power Elect. 27, 165-173 (2022)
- Park, J., Jeon, Y., Na, J., Cho, S., Shin, Y., Shin, W., Kim, J.-H.: Development of high efficiency power module for electric vehicle charger. Trans. Korean Soc. Automot. Eng. 30, 785-792 (2022) https://doi.org/10.7467/KSAE.2022.30.10.785
- Park, J.S., et al.: Battery charger and control methods. Patent 2022, 0096497 (2022)
- Castilla, M., Miret, J., Camacho, A., Matas, J., de Vicuna, L.G.: Reduction of current harmonic distortion in three-phase grid-connected photovoltaic inverters via resonant current control. IEEE Trans. Industr. Electron. 60(4), 1464-1472 (2013) https://doi.org/10.1109/TIE.2011.2167734
- Cho, S., Kang, H.-S., Lee, K.-B., Yoo, J.-Y.: performance improvement of a grid-connected inverter under distorted grid voltage using a harmonic extractor. Electronics 8(9), 1038 (2019)
- Kim, C.S., Baek, S.W.: A study on portable smart tester for fault diagnosis of electric vehicle charger. J. Korea Inst. Elect. Commun. Sci 14(1), 161-168 (2019)