DOI QR코드

DOI QR Code

Dynamic power distribution strategy using multi-objective collaborative optimization for hybrid energy storage systems

  • Yuqing Shao (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Hongjuan Zhang (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Yan Gao (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Baoquan Jin (Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology)
  • Received : 2022.12.30
  • Accepted : 2023.05.09
  • Published : 2023.10.20

Abstract

This paper proposes a dynamic power distribution strategy for the hybrid energy storage systems (HESSs) in electric vehicles (EVs). First, the power loss of a HESS is analyzed based on its structure and model. Second, the optimal objectives for EV range extension, battery degradation mitigation, and HESS energy loss reduction are set, and the corresponding optimization variables are determined. Then, a multi-objective collaborative optimization (MOCO) function is established. It is further transformed into a linear programming problem with the battery current as the control variable. Finally, the dynamic power distribution scheme is obtained by analyzing the MOCO problem. The dynamic power distribution strategy using the MOCO is studies through simulations and experiments under the worldwide harmonized light vehicles test cycle. The obtained results indicate that the performances of the three optimal objectives are collaboratively improved.

Keywords

Acknowledgement

The authors thank the National Natural Science Foundation of China (No. 51775363) and the Key Research and Development Projects of Shanxi Province (No. 201803D121124) for funding this research project.

References

  1. Wang, Y., Wang, L., Li, M., Chen, Z.: A review of key issues for control and management in battery and ultra-capacitor hybrid energy storage systems. eTransportation 4, 1 (2020)
  2. Babu, T., Vasudevan, K., Ramachandaramurthy, V., Sani, S., Chemud, S., Lajim, R.: A comprehensive review of hybrid energy storage systems: converter topologies, control strategies and future prospects. IEEE Access 8, 148702-148721 (2020) https://doi.org/10.1109/ACCESS.2020.3015919
  3. Song, Z., Hofmann, H., Li, J., Han, X., Zhang, X., Ouyang, M.: A comparison study of different semi-active hybrid energy storage system topologies for electric vehicles. J. Power Sources 274, 400-411 (2015) https://doi.org/10.1016/j.jpowsour.2014.10.061
  4. Lu, X., Wang, H.: Optimal sizing and energy management for cost-effective PEV hybrid energy storage systems. IEEE Trans. Ind. Informat. 16(5), 3407-3416 (2020) https://doi.org/10.1109/TII.2019.2957297
  5. Liu, Y., Li, Z., Lin, Z., Zhao, K., Zhu, Y.: Multi-objective optimization of energy management strategy on hybrid energy storage system based on Radau Pseudospectral method. IEEE Access 7, 112483-112493 (2019) https://doi.org/10.1109/ACCESS.2019.2935188
  6. Liao, H., Peng, J., Wu, Y., Li, H., Zhou, Y., Zhang, X., Huang, Z.: Adaptive split-frequency quantitative power allocation for hybrid energy storage systems. IEEE Trans. Transport. Electrific. 7(4), 2306-2317 (2021) https://doi.org/10.1109/TTE.2021.3070849
  7. Hredzak, B., Agelidis, V., Demetriades, G.: A low complexity control system for a hybrid DC power source based on ultracapacitor-lead-acid battery configuration. IEEE Trans. Power Electron. 29(6), 2882-2891 (2014) https://doi.org/10.1109/TPEL.2013.2277518
  8. Peng, J., Wang, R., Liao, H., Zhou, Y., Li, H., Wu, Y., Huang, Z.: A real-time layer-adaptive wavelet transform energy distribution strategy in a hybrid energy storage system of EVs. Energies 12(3), 1 (2019)
  9. Wang, B., Xu, J., Cao, B., Zhou, X.: A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles. J. Power Sources 281, 432-443 (2015) https://doi.org/10.1016/j.jpowsour.2015.02.012
  10. Li, Y., Huang, X., Liu, D., Wang, M., Xu, J.: Hybrid energy storage system and energy distribution strategy for four-wheel independent-drive electric vehicles. J. Clean. Prod. 220, 756-770 (2019) https://doi.org/10.1016/j.jclepro.2019.01.257
  11. Zhang, H., Zhang, F., Yang, L., Gao, Y., Jin, B.: Multi-parameter collaborative power prediction to improve the efficiency of supercapacitor-based regenerative braking system. IEEE Trans. Energy Convers. 36(4), 2612-2622 (2021)
  12. Naseri, F., Farjah, E., Ghanbari, T.: An efficient regenerative braking system based on battery/supercapacitor for electric, hybrid and plug-in hybrid electric vehicles with BLDC motor. IEEE Trans. Veh. Technol. 66(5), 3724-3738 (2017)
  13. Bindu, R., Thale, S.: Power management strategy for an electric vehicle driven by hybrid energy storage system. IETE J. RES. 68(4), 2801-2811 (2022) https://doi.org/10.1080/03772063.2020.1729257
  14. Mali, V., Tripathi, B.: Thermal stability of supercapacitor for hybrid energy storage system in lightweight electric vehicles: Simulation and experiments. J. Mod. Power Syst. Cle. 10(1), 170-178 (2022) https://doi.org/10.35833/MPCE.2020.000311
  15. Gomozov, O., Trovao, J., Kestelyn, X., Dubois, M.: Adaptive energy management system based on a real-time model predictive control with nonuniform sampling time for multiple energy storage electric vehicle. IEEE Trans. Veh. Technol. 66(7), 5520-5530 (2017) https://doi.org/10.1109/TVT.2016.2638912
  16. Li, M., Wang, L., Wang, Y., Chen, Z.: Sizing optimization and energy management strategy for hybrid energy storage system using multi-objective optimization and random forests. IEEE Trans. Power Electron. 36(10), 11421-11430 (2021) https://doi.org/10.1109/TPEL.2021.3070393
  17. Song, Z., Hofmann, H., Li, J., Hou, J., Han, X., Ouyang, M.: Energy management strategies comparison for electric vehicles with hybrid energy storage system. Appl. Energy 134, 321-331 (2014) https://doi.org/10.1016/j.apenergy.2014.08.035
  18. Liu, C., Wang, Y., Chen, Z.: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system. Energy 166, 796-806 (2019) https://doi.org/10.1016/j.energy.2018.10.131
  19. Nguyen, B., German, R., Trovao, J., Bouscayrol, A.: Real-time energy management of battery/supercapacitor electric vehicles based on an adaptation of Pontryagin's minimum principle. IEEE Trans. Veh. Technol. 66(1), 203-212 (2019)
  20. Wang, L., Wang, Y., Liu, C., Yang, D., Chen, Z.: A power distribution strategy for hybrid energy storage system using adaptive model predictive control. IEEE Trans. Power Electron. 35(6), 5897-5906 (2020) https://doi.org/10.1109/TPEL.2019.2953050
  21. Liu, C., Wang, Y., Wang, L., Chen, Z.: Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization. J. Power Sources 438, 1 (2019)
  22. Cheng, L., Wang, W., Wei, S., Lin, H., Jia, Z.: An improved energy management strategy for hybrid energy storage system in light rail vehicles. Energies 11(2), 1 (2018)
  23. Li, C., Liu, G.: Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles. J. Power Sources 192(2), 525-533 (2019) https://doi.org/10.1016/j.jpowsour.2009.03.007
  24. Wang, Y., Yang, Z., Lin, F., An, X., Zhou, H., Fang, X.: A hybrid energy management strategy based on line prediction and condition analysis for the hybrid energy storage system of tram. IEEE Trans. Ind Appl. 56(2), 1793-1803 (2020) https://doi.org/10.1109/TIA.2020.2967312
  25. Shen, J., Khaligh, A.: A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system. IEEE Trans. Transport. Electrific. 1(3), 223-231 (2015) https://doi.org/10.1109/TTE.2015.2464690
  26. Anbazhagan, G., Jayakumar, S., Muthusamy, S., Sundararajan, S., Panchal, H., Sadasivuni, K.: An effective energy management strategy in hybrid electric vehicles using Taguchi based approach for improved performance. Energ. Source Part A 44, 3418-3435 (2022) https://doi.org/10.1080/15567036.2022.2025956
  27. Hou, J., Song, Z.: A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity. Appl. Energy 257, 1 (2020)