DOI QR코드

DOI QR Code

Sequential model predictive control for five-level MMC-based multi-terminal HVDC systems

  • Ali Bouzidi (Department of Electrical Engineering, University of M'sila) ;
  • Said Barkat (Department of Electrical Engineering, University of M'sila) ;
  • Ali Akka (Department of Physics Sciences, Higher Normal School of Boussada) ;
  • Mohamed Lokmane Bendaas (Department of Electrical Engineering, Batna 2 University)
  • Received : 2022.11.16
  • Accepted : 2023.05.16
  • Published : 2023.10.20

Abstract

In this paper, a Sequential Model Predictive Control (SMPC) is proposed for controlling a Modular Multilevel Converter (MMC)-based Multi-Terminal high Voltage Direct Current (MTDC) grid. Based on an adequate predictive model of the grid side of each MMC unit, cost functions are designed and optimized to generate the appropriate switching states of each MMC. In addition to its ability to guarantee accurate power-sharing between deferent controlled MMCs units, the conspicuous features of the propose MPC strategy are the sub-module capacitor voltages balancing and MMC circulating currents minimization. To validate the performance and the effectiveness of the proposed control approach in terms of its ability to achieve the desired performance under various operational conditions, comprehensive simulation studies are conducted on a four-terminal MMC-MTDC system.

Keywords

References

  1. Silva, A., Santos, R., Torres, J., Coury, D.: An accurate method for fault location in HVDC systems based on pattern recognition of DC voltage signals. Electric Power Syst. Res. 170, 64-71 (2019)  https://doi.org/10.1016/j.epsr.2019.01.013
  2. Korytowski, M.: Uno lamm: the father of HVDC transmission. IEEE Power Energ. Mag. 15(5), 92-102 (2017)  https://doi.org/10.1109/MPE.2017.2711759
  3. Nayak, S.-R., Kishan, D.: Performance analysis of series/parallel and dual side LCC compensation topologies of inductive power transfer for EV battery charging system. Front. Energy 14(1), 166-179 (2020)  https://doi.org/10.1007/s11708-018-0549-z
  4. Keim, T., Bind, A.: Recent advances in HVDC and UHVDC transmission. IEEE Power Electron. Mag. 4(4), 12-18 (2017) 
  5. Friedrich, K.: Modern HVDC plus application of VSC in modular multilevel converter topology. In: IEEE international symposium on industrial electronics. IEEE, Bari, Italy (2010) 
  6. Flourentzou, N., Agelidis, V., Demetriades, G.: VSC-based HVDC power transmission systems: an overview. IEEE Trans. Power Electron. 24(3), 92-602 (2009) 
  7. Sang, S., Zhang, C., Zhang, J., Shi, G., Deng, F.: Analysis and stabilization control of a voltage source-controlled wind farm under weak grid conditions. Front. Energy 16, 1-13 (2022)  https://doi.org/10.1007/s11708-022-0816-x
  8. Khazaei, J., Idowu, P., Asrari, A., Shafaye, A.-B., Piyasinghe, L.: Review of HVDC control in weak AC grids. Electric Power Syst. Res. 162, 194-206 (2018)  https://doi.org/10.1016/j.epsr.2018.05.022
  9. Van Hertem, D., Ghandhari, M.: Multi-terminal VSC HVDC for the European super grid: obstacles. Renew. Sustain. Energy Rev. 14, 3156-3163 (2010)  https://doi.org/10.1016/j.rser.2010.07.068
  10. Sun, P., Wang, Y., Khalid, M., Blasco-Gimenez, R., Konstantinou, G.: Steady-state power distribution in VSC-based MTDC systems and dc grids under mixed P/V and I/V droop control. J. Electric Power Syst. Res. 214, 108798 (2022) 
  11. Jafari, M., Jafarishiadeh, F., Ghasemi, A.: New mmc-based multilevel converter with two-and-one set of arms and one inductor. In: IEEE power and energy conference. IEEE, Illinois, USA (2020) 
  12. Kouro, S., Malinowski, M., Gopakumar, K., Pou, J., Franquelo, L.-G., Wu, B., Rodriguez, J., Perez, M.-A., Leon, J.-I.: Recent advances and industrial applications of multilevel converters. IEEE Trans. Industr. Electron. 57(8), 2553-2580 (2010)  https://doi.org/10.1109/TIE.2010.2049719
  13. Alharbi, M., Isik, S., Bhattacharya, S.: Reliability comparison and evaluation of MMC based HVDC systems. In: IEEE electronic power grid conference (eGrid). IEEE, Charleston, USA (2018) 
  14. Allebrod, S., Hamerski, R., Marquardt, R.: New transformerless, scalable modular multilevel converters for HVDC-transmission. In: IEEE power electronics specialists conference. IEEE, Rhodes, Greece (2008) 
  15. Sakib, M.-N., Azad, S.-P., Kazerani, M.: A critical review of modular multilevel converter configurations and submodule topologies from DC fault blocking and ride-through capabilities viewpoints for HVDC applications. Energies 15(11), 4176 (2022) 
  16. Angquist, L., Antonopoulos, A., Siemaszko, D., Ilves, K., Vasiladiotis, M., Nee, H.-P.: Open-Loop control of modular multilevel converters using estimation of stored energy. IEEE Trans. Ind. Appl. 47(6), 2516-2524 (2011)  https://doi.org/10.1109/TIA.2011.2168593
  17. Bergna, G., Berne, E., Garces, A., Egrot, P., Vannier, J.-C., Molinas, M.: Generalized power control approach in ABC frame for modular multilevel converters based on Lagrange multipliers. In: IEEE international energy conference and exhibition (ENERGYCON). IEEE, Florence, Italy (2012) 
  18. Debnath, S., Qin, J., Bahrani, B., Saeedifard, M., Barbosa, P.: Operation, Control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30(1), 37-53 (2015)  https://doi.org/10.1109/TPEL.2014.2309937
  19. Qin, J., Saeedifard, M.: Predictive control of a modular multilevel converter for a back-to-back HVDC system. IEEE Trans. Power Deliv. 27(3), 1538-1547 (2012)  https://doi.org/10.1109/TPWRD.2012.2191577
  20. Zhang, Z., Dragicevic, T., Li, Y., Wang, Y., Zheng, C., Leng, M., Rodriguez, J.: Model predictive control of power converters, motor drives, and microgrids. Control Power Electron. Convert. Syst. 3, 101-124 (2021) 
  21. Garcia, C.-F., Rivera, M.-E., Rodriguez, J.-R., Wheeler, P.-W., Pena, R.-S.: Predictive current control with instantaneous reactive power minimization for a four-leg indirect matrix converter. IEEE Trans. Industr. Electron. 64(2), 922-929 (2017)  https://doi.org/10.1109/TIE.2016.2610939
  22. Vazquez, S., Leon, J.-I., Franquelo, L.-G., Rodriguez, J., Young, H.-A., Marquez, A., Zanchetta, P.: Model predictive control: a review of its applications in power electronics. IEEE Ind. Electron. Mag. 8(1), 16-32 (2014)  https://doi.org/10.1109/MIE.2013.2290138
  23. Bouzidi, M., Barkat, S., Krama, A., Abu-Rub, H.: simplified predictive direct power control of three-phase three-level four-leg grid connected NPC converter. IEEE Open J. Indust. Electron. Soc. 3, 448-459 (2022)  https://doi.org/10.1109/OJIES.2022.3184336
  24. Dekka, A., Yaramasu, V., Lizana, F.-R., Ronanki, D.: Model predictive control of modular multilevel converters. In: Multilevel inverters: control methods and advanced power electronic applications, pp. 129-153. Elsevier (2021) 
  25. Zhao, P., Guo, M., Tang, X., Liu, Y., Huo, Q., Pang, A., Zhang, M., Sizhuo, L.: Model predictive control of VSC-HVDC transmission system for power supply to passive networks. Int. Conf. Build. Energy Conserv. Thermal Safety Environ. Pollut. Control. 136, 02015 (2019) 
  26. Jia, Y., Meng, K., Sun, C., Yuan, L., Dong, Z.-Y.: Economic-driven frequency regulation in multi-terminal HVDC systems: a cooperative distributed approach. IEEE Trans. Power Syst. 35(3), 2245-2255 (2020)  https://doi.org/10.1109/TPWRS.2019.2953876
  27. Zhao, H., Lin, Z., Wu, Q., Huang, S.: Model predictive control based coordinated control of multi-terminal HVDC for enhanced frequency oscillation damping. Electr. Power Energy Syst. 123, 106328 (2020) 
  28. Li, T., Pan, R., Wang, L.: Model predictive control of multi-terminal VSCHVDC offshore wind power system. In: Chinese automation congress (CAC), pp. 7428-7433. IEEE, Shanghai, China (2020) 
  29. Reguig Berra, A., Barkat, S., Bouzidi, M.: Virtual fux predictive direct power control of five-level T-type multi-terminal VSC-HVDC system. Period. Polytech. Electr. Eng. Comput. Sci. 64(2), 133-143 (2020)  https://doi.org/10.3311/PPee.14441
  30. Sultan, Y.-A., Kaddah, S.-S., Eladl, A.-A.: VSC-HVDC system-based on model predictive control integrated with offshore wind farms. IET Renew. Power Gener. 15, 1315-1330 (2021)  https://doi.org/10.1049/rpg2.12109
  31. Norambuena, M., Rodriguez, J., Zhang, Z., Wang, F., Garcia, C., Kennel, R.: A very simple strategy for high-quality performance of AC machines using model predictive control. IEEE Trans. Power Electron. 34(1), 794-800 (2019)  https://doi.org/10.1109/TPEL.2018.2812833
  32. Bouafia, A., Gaubert, J.P., Krim, F.: Predictive direct power control of three-phase pulse width modulation (PWM) rectifier using space-vector modulation (SVM). IEEE Trans. Power Electron. 25(1), 228-236 (2010)  https://doi.org/10.1109/TPEL.2009.2028731
  33. Antoniewicz, P., Kazmierkowski, M.-P.: Virtual-fux-based predictive direct power control of AC/DC converters with online inductance estimation. IEEE Trans. Industr. Electron. 55(12), 4381-4390 (2008)  https://doi.org/10.1109/TIE.2008.2007519
  34. Meshram, P.-M., Borghate, V.-B.: A novel voltage balancing method applied to direct control strategy of MMC-HVDC system. In: IEEE international conference on advances in engineering science and management (ICAESM). IEEE, Nagapattinam, India (2012) 
  35. Konstantinou, G.S., Ciobotaru, M., Agelidis, V.G.: Analysis of multi-carrier PWM methods for back-to-back HVDC systems based on modular multilevel converters. In: 37th Annual Conference of the IEEE Industrial Electronics Society (IECON), Melbourne, Australia (2011)