Acknowledgement
이 성과는 2020년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임. (NRF-2021R1A2C10099268)
References
- E. Bakker and M. Telting-Diaz, Electrochemical sensors, Anal. Chem., 74, 2781-2800 (2002). https://doi.org/10.1021/ac0202278
- B. J. Privett, J. H. Shin, and M. H. Schoenfisch, Electrochemical sensors, Anal. Chem., 82, 4723-4741 (2010). https://doi.org/10.1021/ac101075n
- H. J. Park, J. Jeong, S. G. Son, S. J. Kim, M. Lee, H. J. Kim, J. Jeong, S. Y. Hwang, J. Park, Y. Eom, and B. G. Choi, Fluiddynamics-processed highly stretchable, conductive, and printable graphene inks for real-time monitoring sweat during stretching exercise, Adv. Funct. Materials, 31, 2011059-201170 (2021). https://doi.org/10.1002/adfm.202011059
- J. H. Yoon, S. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946-111952 (2020). https://doi.org/10.1016/j.bios.2019.111946
- M. S. Kil, S. J. Kim, H. J. Park, J. H. Yoon, J. Jeong, and B. G. Choi, Highly stretchable sensor based on fluid dynamics-assisted graphene inks for real-time monitoring of sweat, ACS Appl. Mater. Interfaces, 14, 48072-48080 (2022). https://doi.org/10.1021/acsami.2c10638
- S. J. Kim, M. S. Kil, H. J. Park, J. H. Yoon, J. Kim, N. H. Bae, K. G. Lee, and B. G. Choi, Highly stretchable and conductive carbon thread incorporated into elastic rubber for wearable real-time monitoring of sweat during stretching exercise, Adv. Mater. Technol., 8, 2201042-2201050 (2023). https://doi.org/10.1002/admt.202201042
- S. G. Son, H. J. Park, S. Kim, S. J. Kim, M. S. Kil, J. Jeong, Y. Lee, Y. Eom, S. Y. Hwang, J. Park, and B. G. Choi, Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics process for printed wearable sweat-monitoring sensor, Chem. Eng. J., 424, 140443-140452 (2023).
- R. Shiwaku, H. Matsui, K. Nagamine, M. Uematsu, T. Mano, Y. Maruyama, A. Nomura, K. Tsuchiya, K. Hayasaka, Y. Takeda, T. Fukuda, D. Kumaki, and S. Tokito, A printed organic circuit system for wearable amperometric electrochemical sensors, Sci. Rep., 8, 6368-6375 (2018). https://doi.org/10.1038/s41598-018-24744-x
- H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Conver., 6, 1-7 (2019). https://doi.org/10.1186/s40580-018-0172-z
- M. S. Kil, H. J. Park, J. H. Yoon, J. Jang, K. G. Lee, and B. G. Choi, Stretchable graphene conductor based on fluid dynamics and its application to flexible conductometric sensor, Carbon Lett., 32, 1791-1798 (2022). https://doi.org/10.1007/s42823-022-00403-0
- M. Pohanka and P. Skladal, Electrochemical biosensors-principles and applications, J. Appl. Biomed., 6, 57-64 (2008). https://doi.org/10.32725/jab.2008.008
- H. Ma, Y. Su, and A. Nathan, Cell constant studies of bipolar and tetrapolar electrode systems for impedance measurement, Sens. Actuators B Chem., 221, 1264-1270 (2015). https://doi.org/10.1016/j.snb.2015.07.089
- G. Korotcenkov and B. K. Cho, Metal oxide composites in conductometric gas sensors: Achievements and challenges, Sens. Actuators B Chem., 244, 182-210 (2017). https://doi.org/10.1016/j.snb.2016.12.117
- G. S. Perera, T. Ahmed, L. Heiss, S. Walia, M. Bhaskaran, and S. Sriram, Rapid and selective biomarker detection with conductometric sensors, Small, 17, 2005582-2005593 (2021). https://doi.org/10.1002/smll.202005582
- P. Pattananuwat, M. Tagaya, and T. Kobayashi, A novel highly sensitive humidity sensor based on poly (pyrrole-co-formyl pyrrole) copolymer film: AC and DC impedance analysis, Sens. Actuators B Chem., 209, 186-193 (2015). https://doi.org/10.1016/j.snb.2014.11.111
- P. Versura and E. C. Campos, TearLab® osmolarity system for diagnosing dry eye, Expert Rev. Mol. Diagn., 13, 119-129 (2013). https://doi.org/10.1586/erm.12.142
- M. D. P. Willcox, P. Argueso, G. A. Georgiev, J. M. Holopainen, G. W. Laurie, T. J. Millar, E. B. Papas, J. P. Rolland, T. A. Schmidt, U. Stahl, T. Suarez, L. N. Subbaraman, O. O. Ucakhan, and L. Jones, TFOS DEWS II tear film report, Ocul. Surf., 15, 366-403 (2017). https://doi.org/10.1016/j.jtos.2017.03.006
- E. C. Kim, Diagnosis and treatment of dry eye syndrome, J. Korean Med. Assoc., 6, 352-364 (2018). https://doi.org/10.5124/jkma.2018.61.6.352
- M. S. Zeev, D. D. Miller, and R. Latkany, Diagnosis of dry eye disease and emerging technologies, Clin. Ophthalmol., 8, 581-590 (2014). https://doi.org/10.2147/OPTH.S45444
- H. Lin and S. C. Yiu, Dry eye disease: A review of diagnostic approaches and treatments, J. Ophthalmol., 28, 173-181 (2014).
- Y. Wu, C. Wang, X. Wang, Y. Mou, K. Yuan, X. Huang, and X. Jin, Advances in dry eye disease examination techniques, Front. Med., 8, 3048-3062 (2022).
- E. M. Messmer, V. von Lindenfels, A. Garbe, and A. Kampik, Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay, Ophthalmol Sci., 123, 2300-2308 (2016). https://doi.org/10.1016/j.ophtha.2016.07.028
- L. Jones, L. E. Downie, D. Korb, J. M. Benitex-del-Castillo, R. Dana, S. X. Deng, P. N. Dong, G. Geerling, R. Y. Hida, Y. Liu, K. Y. Seo, J. Tauber, T. H. Wakamatsu, J. Xu, J. S. Wolffsohn, and J. P. Craig, TFOS DEWS II management and therapy report, Ocul. Surf., 15, 575-628 (2017). https://doi.org/10.1016/j.jtos.2017.05.006
- K. A. Beckman, J. Luchs, and M. S. Milner, Making the diagnosis of Sjogren's syndrome in patients with dry eye, Clin. Ophthalmol., 10, 43-53 (2016). https://doi.org/10.2147/OPTH.S80043
- M. S. Kil, M. J. Kim, J. H. Yoon, J. Jang, K. G. Lee, and B. G. Choi, Surface modification of gold electrode using nafion polymer and its application as an impedance sensor for measuring osmotic pressure, Appl. Chem. Eng., 34, 9-14 (2023).
- S. J. Kim, S. G. Son, J. H. Yoon, and B. G. Choi, Fabrication of potentiometric sodium-ion sensor based on carbon and silver inks and its electrochemical characteristics, Appl. Chem. Eng., 32, 456-460 (2021).
- S. G. Son, H. J. Park, Y. K. Kim, H. Cho, and B. G. Choi, Fabrication of low-cost and flexible potassium ion sensors based on screen printing and their electrochemical characteristics, Appl. Chem. Eng., 30, 737-741 (2019).
- P. B. Ishai, M. S. Talary, A. Caduff, E. Levy, and Y. Feldman, Electrode polarization in dielectric measurements: A review, Meas. Sci. Technol., 24, 102001-102021 (2013). https://doi.org/10.1088/0957-0233/24/10/102001
- A. Grattoni, M. Merlo, and M. Ferrari, Osmotic pressure beyond concentration restrictions, J. Phys. Chem. B, 111, 11770-11775 (2007). https://doi.org/10.1021/jp075834j
- J. M. Banks and A. D. Hirons, Alternative methods of estimating the water potential at turgor loss point in Acer genotypes, Plant Methods, 15, 1-6 (2019). https://doi.org/10.1186/s13007-019-0410-3
- M. Rasouli, Basic concepts and practical equations on osmolality: Biochemical approach, Clin. Biochem., 49, 936-941 (2016). https://doi.org/10.1016/j.clinbiochem.2016.06.001