DOI QR코드

DOI QR Code

Surface Modification of a Screen-printed Carbon Electrode with Iridium Oxide and Its Application of an Impedance Sensor

스크린 프린팅 탄소 전극의 이리듐 산화물 표면 개질과 이의 임피던스 센서 응용

  • Min Sik Kil (Department of Chemical Engineering, Kangwon National University) ;
  • Jo Hee Yoon (Department of Chemical Engineering, Kangwon National University) ;
  • Jinwu Jang (Department of Chemical Engineering, Kangwon National University) ;
  • Bong Gill Choi (Department of Chemical Engineering, Kangwon National University)
  • 길민식 (강원대학교(삼척캠퍼스) 에너지화학공학과) ;
  • 윤조희 (강원대학교(삼척캠퍼스) 에너지화학공학과) ;
  • 장진우 (강원대학교(삼척캠퍼스) 에너지화학공학과) ;
  • 최봉길 (강원대학교(삼척캠퍼스) 에너지화학공학과)
  • Received : 2023.05.28
  • Accepted : 2023.07.19
  • Published : 2023.10.10

Abstract

In this study, we developed an impedance sensor capable of controlling electrode polarization by coating iridium oxide (IrOx) on the surface of the screen-printed carbon electrode. IrOx was deposited on the surface of carbon electrodes according to the number of cycles (0~50 cycles) by cyclic voltammetry. Observation of scanning electron microscope images revealed that the size and number of IrOx particles increased as the number of cycles increased. The changes in impedance responses as a function of the NaCl concentration of the as-obtained sensors were investigated using electrochemical impedance spectroscopy. The sensors manufactured in 50 cycles exhibited the best coefficient of determination and reproducibility, attributed to the well-controlled electrode polarization. We further demonstrated the usefulness of the IrOx-based sensor as a diagnosis sensor for dry eye syndrome by comparing the results of the commercially available osmometer and our sensor using actual solution samples.

본 연구에서는 스크린 프린팅 공정을 통해 탄소 잉크 기반의 2상 전극을 제작하고, 전극 표면에 이리듐 산화물(IrOx)을 코팅함으로써 전극의 분극 현상을 제어할 수 있는 임피던스 센서를 개발하였다. IrOx는 순환 전압 전류법으로 탄소 전극의 표면 위에 순환 수(0~50 cycles)에 따라서 코팅되었다. 전자주사현미경을 이용하여 cycle 수가 증가할수록 IrOx 입자의 크기와 수가 증가하는 경향성을 확인하였다. 전기화학 임피던스 분석을 이용하여 상기 제조된 센서들의 NaCl 농도에 따른 임피던스 변화 값을 조사하였다. 50 cycle에서 제조된 센서가 가장 우수한 결정계수와 재현성을 나타내었으며, 이는 분극 현상이 잘 제어되었기 때문이다. 실제 용액 샘플들을 이용한 삼투압 장비와 비교 측정 실험을 수행함으로써 IrOx 기반 센서의 안구건조증 진단 센서로의 활용가치를 증명하였다.

Keywords

Acknowledgement

이 성과는 2020년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임. (NRF-2021R1A2C10099268)

References

  1. E. Bakker and M. Telting-Diaz, Electrochemical sensors, Anal. Chem., 74, 2781-2800 (2002).  https://doi.org/10.1021/ac0202278
  2. B. J. Privett, J. H. Shin, and M. H. Schoenfisch, Electrochemical sensors, Anal. Chem., 82, 4723-4741 (2010).  https://doi.org/10.1021/ac101075n
  3. H. J. Park, J. Jeong, S. G. Son, S. J. Kim, M. Lee, H. J. Kim, J. Jeong, S. Y. Hwang, J. Park, Y. Eom, and B. G. Choi, Fluiddynamics-processed highly stretchable, conductive, and printable graphene inks for real-time monitoring sweat during stretching exercise, Adv. Funct. Materials, 31, 2011059-201170 (2021).  https://doi.org/10.1002/adfm.202011059
  4. J. H. Yoon, S. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946-111952 (2020).  https://doi.org/10.1016/j.bios.2019.111946
  5. M. S. Kil, S. J. Kim, H. J. Park, J. H. Yoon, J. Jeong, and B. G. Choi, Highly stretchable sensor based on fluid dynamics-assisted graphene inks for real-time monitoring of sweat, ACS Appl. Mater. Interfaces, 14, 48072-48080 (2022).  https://doi.org/10.1021/acsami.2c10638
  6. S. J. Kim, M. S. Kil, H. J. Park, J. H. Yoon, J. Kim, N. H. Bae, K. G. Lee, and B. G. Choi, Highly stretchable and conductive carbon thread incorporated into elastic rubber for wearable real-time monitoring of sweat during stretching exercise, Adv. Mater. Technol., 8, 2201042-2201050 (2023).  https://doi.org/10.1002/admt.202201042
  7. S. G. Son, H. J. Park, S. Kim, S. J. Kim, M. S. Kil, J. Jeong, Y. Lee, Y. Eom, S. Y. Hwang, J. Park, and B. G. Choi, Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics process for printed wearable sweat-monitoring sensor, Chem. Eng. J., 424, 140443-140452 (2023). 
  8. R. Shiwaku, H. Matsui, K. Nagamine, M. Uematsu, T. Mano, Y. Maruyama, A. Nomura, K. Tsuchiya, K. Hayasaka, Y. Takeda, T. Fukuda, D. Kumaki, and S. Tokito, A printed organic circuit system for wearable amperometric electrochemical sensors, Sci. Rep., 8, 6368-6375 (2018).  https://doi.org/10.1038/s41598-018-24744-x
  9. H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Conver., 6, 1-7 (2019).  https://doi.org/10.1186/s40580-018-0172-z
  10. M. S. Kil, H. J. Park, J. H. Yoon, J. Jang, K. G. Lee, and B. G. Choi, Stretchable graphene conductor based on fluid dynamics and its application to flexible conductometric sensor, Carbon Lett., 32, 1791-1798 (2022).  https://doi.org/10.1007/s42823-022-00403-0
  11. M. Pohanka and P. Skladal, Electrochemical biosensors-principles and applications, J. Appl. Biomed., 6, 57-64 (2008).  https://doi.org/10.32725/jab.2008.008
  12. H. Ma, Y. Su, and A. Nathan, Cell constant studies of bipolar and tetrapolar electrode systems for impedance measurement, Sens. Actuators B Chem., 221, 1264-1270 (2015).  https://doi.org/10.1016/j.snb.2015.07.089
  13. G. Korotcenkov and B. K. Cho, Metal oxide composites in conductometric gas sensors: Achievements and challenges, Sens. Actuators B Chem., 244, 182-210 (2017).  https://doi.org/10.1016/j.snb.2016.12.117
  14. G. S. Perera, T. Ahmed, L. Heiss, S. Walia, M. Bhaskaran, and S. Sriram, Rapid and selective biomarker detection with conductometric sensors, Small, 17, 2005582-2005593 (2021).  https://doi.org/10.1002/smll.202005582
  15. P. Pattananuwat, M. Tagaya, and T. Kobayashi, A novel highly sensitive humidity sensor based on poly (pyrrole-co-formyl pyrrole) copolymer film: AC and DC impedance analysis, Sens. Actuators B Chem., 209, 186-193 (2015).  https://doi.org/10.1016/j.snb.2014.11.111
  16. P. Versura and E. C. Campos, TearLab® osmolarity system for diagnosing dry eye, Expert Rev. Mol. Diagn., 13, 119-129 (2013).  https://doi.org/10.1586/erm.12.142
  17. M. D. P. Willcox, P. Argueso, G. A. Georgiev, J. M. Holopainen, G. W. Laurie, T. J. Millar, E. B. Papas, J. P. Rolland, T. A. Schmidt, U. Stahl, T. Suarez, L. N. Subbaraman, O. O. Ucakhan, and L. Jones, TFOS DEWS II tear film report, Ocul. Surf., 15, 366-403 (2017).  https://doi.org/10.1016/j.jtos.2017.03.006
  18. E. C. Kim, Diagnosis and treatment of dry eye syndrome, J. Korean Med. Assoc., 6, 352-364 (2018).  https://doi.org/10.5124/jkma.2018.61.6.352
  19. M. S. Zeev, D. D. Miller, and R. Latkany, Diagnosis of dry eye disease and emerging technologies, Clin. Ophthalmol., 8, 581-590 (2014).  https://doi.org/10.2147/OPTH.S45444
  20. H. Lin and S. C. Yiu, Dry eye disease: A review of diagnostic approaches and treatments, J. Ophthalmol., 28, 173-181 (2014). 
  21. Y. Wu, C. Wang, X. Wang, Y. Mou, K. Yuan, X. Huang, and X. Jin, Advances in dry eye disease examination techniques, Front. Med., 8, 3048-3062 (2022). 
  22. E. M. Messmer, V. von Lindenfels, A. Garbe, and A. Kampik, Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay, Ophthalmol Sci., 123, 2300-2308 (2016).  https://doi.org/10.1016/j.ophtha.2016.07.028
  23. L. Jones, L. E. Downie, D. Korb, J. M. Benitex-del-Castillo, R. Dana, S. X. Deng, P. N. Dong, G. Geerling, R. Y. Hida, Y. Liu, K. Y. Seo, J. Tauber, T. H. Wakamatsu, J. Xu, J. S. Wolffsohn, and J. P. Craig, TFOS DEWS II management and therapy report, Ocul. Surf., 15, 575-628 (2017).  https://doi.org/10.1016/j.jtos.2017.05.006
  24. K. A. Beckman, J. Luchs, and M. S. Milner, Making the diagnosis of Sjogren's syndrome in patients with dry eye, Clin. Ophthalmol., 10, 43-53 (2016).  https://doi.org/10.2147/OPTH.S80043
  25. M. S. Kil, M. J. Kim, J. H. Yoon, J. Jang, K. G. Lee, and B. G. Choi, Surface modification of gold electrode using nafion polymer and its application as an impedance sensor for measuring osmotic pressure, Appl. Chem. Eng., 34, 9-14 (2023). 
  26. S. J. Kim, S. G. Son, J. H. Yoon, and B. G. Choi, Fabrication of potentiometric sodium-ion sensor based on carbon and silver inks and its electrochemical characteristics, Appl. Chem. Eng., 32, 456-460 (2021). 
  27. S. G. Son, H. J. Park, Y. K. Kim, H. Cho, and B. G. Choi, Fabrication of low-cost and flexible potassium ion sensors based on screen printing and their electrochemical characteristics, Appl. Chem. Eng., 30, 737-741 (2019). 
  28. P. B. Ishai, M. S. Talary, A. Caduff, E. Levy, and Y. Feldman, Electrode polarization in dielectric measurements: A review, Meas. Sci. Technol., 24, 102001-102021 (2013).  https://doi.org/10.1088/0957-0233/24/10/102001
  29. A. Grattoni, M. Merlo, and M. Ferrari, Osmotic pressure beyond concentration restrictions, J. Phys. Chem. B, 111, 11770-11775 (2007).  https://doi.org/10.1021/jp075834j
  30. J. M. Banks and A. D. Hirons, Alternative methods of estimating the water potential at turgor loss point in Acer genotypes, Plant Methods, 15, 1-6 (2019).  https://doi.org/10.1186/s13007-019-0410-3
  31. M. Rasouli, Basic concepts and practical equations on osmolality: Biochemical approach, Clin. Biochem., 49, 936-941 (2016).  https://doi.org/10.1016/j.clinbiochem.2016.06.001