DOI QR코드

DOI QR Code

Numerical investigation into particle crushing effects on the shear behavior of gravel

  • Xi Li (National Engineering Research Center of Highway Maintenance Technology, Changsha University of Science and Technology) ;
  • Yayan Liu (School of Traffic and Transportation Engineering, Changsha University of Science and Technology) ;
  • Guoping Qian (National Engineering Research Center of Highway Maintenance Technology, Changsha University of Science and Technology) ;
  • Xueqing Liu (Shanghai Zhuxin Real Estate Broker Co., Ltd.) ;
  • Hao Wang (Ecole des Ponts ParisTech, Laboratoire Navier/CERMES) ;
  • Guoqing Yin (Ecole des Ponts ParisTech, Laboratoire Navier/CERMES)
  • Received : 2022.12.02
  • Accepted : 2023.10.05
  • Published : 2023.10.25

Abstract

This paper presents numerical investigations into the particle crushing effect on the shear properties of gravel under direct shear condition. A novel particle crushing model was developed based on the octahedral shear stress criterion and fragment replacement method. A series of direct shear tests were carried out on unbreakable particles and breakable particles with different strengths. The evolutions of the particle crushing, shear strength, volumetric strain behavior, and contact force fabric during shearing were analyzed. It was observed that the number of crushed particles increased with the increase of the shear displacement and axial pressure and decreased with the particle strength increasing. Moreover, the shear strength and volume dilatancy were obviously decreased with particle crushing. The shear displacement of particles starting to crush was close to that corresponding to the peak shear stress got. Besides, the shear-hardening behavior was obviously affected by the number of crushed particles. A microanalysis showed that due to particle crushing, the contact forces and anisotropy decreased. The mechanism of the particle crushing effect on the shear strength was further clarified in terms of the particle friction and interlock.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (NO. 52278435, No. 51908066), the Science and Technology Talent Promotion Program of Hunan Province (No. 2023TJ-N12), and the Open Fund of National Engineering Research Center of Highway Maintenance Technology (Changsha University of Science & Technology, No. kfj210103).

References

  1. Armaghani, D.J., Mirzaei, F., Toghroli, A. and Shariati, A. (2020), "Indirect measure of shear strength parameters of fiber-reinforced sandy soil using laboratory tests and intelligent systems", Geomech. Eng., 22(5), 397-414. https://doi.org/10.12989/gae.2020.22.5.397.
  2. Ben-Nun, O. and Einav, I. (2008), "A refined DEM study of grain size reduction in uniaxial compression", Proceedings of the 12th international conference of the international association for computer methods and advances in geomechanics (IACMAG), Goa, India, October.
  3. Ben-Nun, O. and Einav, I. (2009), "The role of self-organization during confined comminution of granular materials", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1910), 231-247. https://doi.org/10.1098/rsta.2009.0205.
  4. Borkovec, M., De Paris, W. and Peikert, R. (1994), "The fractal dimension of the Apollonian sphere packing", Fractals, 2(4), 521-526. https://doi.org/10.1142/s0218348x94000739.
  5. Chen, H., Wei, H., Meng, Q., Wang, Z. and Feng, Z. (2018), "The study on stress-strain-strength behavior of calcareous sand with particle breakage", Eng. Geol., 26(6), 1490-1498. https://doi.org/10.13544/j.cnki.jeg.2017-519.
  6. Ciantia, M.O., Arroyo, M., Calvetti, F. and Gens, A. (2015), "An approach to enhance efficiency of DEM modelling of soils with crushable grains", Geotechnique, 65(2), 91-110. https://doi.org/10.1680/geot.13.p.218.
  7. Cundall, P.A. (1988), "Computer simulations of dense sphere assemblies", Micromechanics of Granular Materials - Proceedings of the U.S./Japan Seminar on the Micromechanics of Granular Materials, Sendai-Zao, Japan, October 26-30, 1987.
  8. de De Bono, J.P. and McDowell, G.R. (2014), "DEM of triaxial tests on crushable sand", Granular Matter., 16(4), 551-562. https://doi.org/10.1007/s10035-014-0500-x.
  9. Gong, J., Cheng, L.P., Zhao, L.H., Zou, J.F., Li, L. and Nie, Z.H. (2021), "Study on the packing and shear characteristics of granular mixtures via the DEM", Geomech. Eng., 27(3), 223-237. https://doi.org/10.12989/gae.2021.27.3.223.
  10. Indraratna, B., Thakur, P.K. and Vinod, J.S. (2010), "Experimental and numerical study of railway ballast behavior under cyclic loading", Int. J. Geomech., 10(4), 136-144. https://doi.org/10.1061/(asce)gm.1943-5622.0000055.
  11. Ke-fen, Z., Sheng, Z., Ji-dong, T. and Dai-chao, S. (2017), "3D numerical simulation of particle breakage using discrete element method", Rock Soil Mech., 38(7), 2119-2127. https://doi.org/10.16285/j.rsm.2017.07.036.
  12. Kumar, S.A. and Sujatha, E.R. (2021), "Experimental investigation on the shear strength and deformation behaviour of xanthan gum and guar gum treated clayey sand", Geomech. Eng., 26(2), 101-115. https://doi.org/10.12989/gae.2021.26.2.101.
  13. Li, X., Zhang, K., Ma, X., Teng, J. and Zhang, S. (2020), "New method to evaluate strengthen efficiency by dynamic compaction", Int. J. Geomech., 20(4), 04020024. https://doi.org/10.1061/(asce)gm.1943-5622.0001586.
  14. Likitlersuang, S., Chheng, C., Surarak, C. and Balasubramaniam, A. (2018), "Strength and stiffness parameters of Bangkok clays for finite element analysis", Geotech. Eng., 49(2), 150-156.
  15. Likitlersuang, S., Teachavorasinskun, S., Surarak, C., Oh, E. and Balasubramaniam, A. (2013), "Small strain stiffness and stiffness degradation curve of Bangkok Clays", Soils Found., 53(4), 498-509. https://10.1016/j.sandf.2013.06.003
  16. Liu, Y., Gao, R. and Chen, J. (2021), "A new DEM model to simulate the abrasion behavior of irregularly-shaped coarse granular aggregates", Granular. Matter., 23(3), 1-16. https://doi.org/10.1007/s10035-021-01130-5.
  17. Lobo-Guerrero, S. and Vallejo, L.E. (2006), "Discrete element method analysis of railtrack ballast degradation during cyclic loading", Granular. Matter., 8(3), 195-204. https://doi.org/10.1007/s10035-006-0006-2.
  18. Ma, G., He, X., Jiang, X., Liu, H., Chu, J. and Xiao, Y. (2020), "Strength and permeability of bentonite-assisted biocemented coarse sand", Can. Geotech. J., 58(7), 969-981. https://doi.org/10.1139/cgj-2020-0045.
  19. Mase, L.Z., Likitlersuang, S. and Tobita, T. (2019), "Cyclic behaviour and liquefaction resistance of Izumio sands in Osaka, Japan", Mar. Georesour. Geotech., 37(7), 765-774. https://doi.org/10.1080/1064119X.2018.1485793.
  20. McDowell, G.R. and Humphreys, A. (2002), "Yielding of granular materials", Granular. Matter., 4(1), 1-8. https://doi.org/10.1007/s10035-001-0100-4.
  21. McDowell, G.R., De Bono, J.P., Yue, P. and Yu, H.S. (2013), "Micro mechanics of isotropic normal compression", Geotechnique Lett., 3(4), 166-172. https://doi.org/10.1680/geolett.13.00050.
  22. Russell, A.R. and Wood, D.M. (2009), "Point load tests and strength measurements for brittle spheres", Int. J. Rock Mech. Min. Sci., 46(2), 272-280. https://doi.org/10.1016/j.ijrmms.2008.04.004.
  23. Russell, A.R., Wood, D.M. and Kikumoto, M. (2009), "Crushing of particles in idealised granular assemblies", J. Mech. Phys. Solids, 57(8), 1293-1313. https://doi.org/10.1016/j.jmps.2009.04.009.
  24. Salazar, A., Saez, E. and Pardo, G. (2015), "Modeling the direct shear test of a coarse sand using the 3D Discrete Element Method with a rolling friction model", Comput. Geotech., 67, 83-93. https://doi.org/10.1016/j.compgeo.2015.02.017.
  25. Shen, C., Liu, S., Wang, L. and Wang, Y. (2019), "Micromechanical modeling of particle breakage of granular materials in the framework of thermomechanics", Acta Geotechnica, 14(4), 939-954. https://doi.org/10.1007/s11440-018-0692-z.
  26. Shi, H., Zhang, H. and Song, L. (2020), "Evolution of sandstone shear strength parameters and its mesoscopic mechanism", Geomech. Eng., 20(1), 29-41. https://doi.org/10.12989/gae.2019.20.1.029.
  27. Sukkarak, R., Likitlersuang, S., Jongpradist, P. and Jamsawang, P. (2021), "Strength and stiffness parameters for hardening soil model of rockfill materials", Soils Found., 61(6), 1597-1614. https://doi.org/10.1016/j.sandf.2021.09.007.
  28. Sukkarak, R., Tanapalungkorn, W., Likitlersuang, S. and Ueda, K. (2021), "Liquefaction analysis of sandy soil during strong earthquake in Northern Thailand", Soils Found., 61(5), 1302-1318. https://doi.org/10.1016/j.sandf.2021.07.003.
  29. Sun, W., Wu, S. and Xu, X. (2021), "Mechanical behaviour of Lac du Bonnet granite after high-temperature treatment using bonded-particle model and moment tensor", Comput. Geotech., 135, 104132. https://doi.org/10.1016/j.compgeo.2021.104132.
  30. Surarak, C., Likitlersuang, S., Wanatowski, D., Balasubramaniam, A., Oh, E. and Guan, H. (2012), "Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays", Soils Found., 52(4), 682-697. https://10.1016/j.sandf.2012.07.009.
  31. Takei, M., Kusakabe, O and Hayashi, T. (2001), "Time-dependent behavior of crushable materials in one-dimensional compression tests", Soils Found., 41(1), 97-121. https://doi.org/10.3208/sandf.41.97.
  32. Tavares, L.M. and Anderson, S. (2021), "A stochastic particle replacement strategy for simulating breakage in DEM", Powder Technol., 377, 222-232. https://doi.org/10.1016/j.powtec.2020.08.091.
  33. Thay, S., Likitlersuang, S. and Pipatpongsa, T. (2013), "Monotonic and cyclic behavior of Chiang Mai sand under simple shear mode", Geotech. Geol. Eng., 31, 67-82. https://doi.org/10.1007/s10706-012-9563-9.
  34. Tu, Y.L., Wang, X.C., Lan, Y.Z., Wang, J.B. and Liao, Q. (2022), "Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM", Geomech. Eng., 30(1), 27-44. https://doi.org/10.12989/gae.2022.30.1.027.
  35. Ueng, T.S. and Chen, T.J. (2000), "Energy aspects of particle breakage in drained shear of sands", Geotechnique, 50(1), 65-72. https://doi.org/10.1680/geot.2000.50.1.65.
  36. VandenBerge, D.R., Valentine, R.J., Brandon, T.L. and Wright, S.G. (2021), "Case history: Failure of the reinforced soil slope at Yeager Airport, Charleston, West Virginia", J. Geotech. Geoenviron. Eng., 147(1), 05020013. https://doi.org/10.1061/(asce)gt.1943-5606.0002430.
  37. Wang, P., Yin, Z.Y. and Wang, Z.Y. (2022), "Micromechanical investigation of particle-size effect of granular materials in biaxial test with the role of particle breakage", J. Eng. Mech., 148(1), 04021133. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002039.
  38. Wei, H., Li, X., Zhang, S., Zhao, T., Yin, M. and Meng, Q. (2021), "Influence of particle breakage on drained shear strength of calcareous sands", Int. J. Geomech., 21(7), 04021118. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002078.
  39. Wei, H., Yin, M., Zhao, T., Yan, K., Shen, J., Meng, Q. and He, J. (2021), "Effect of particle breakage on the shear strength of calcareous sands", Mar. Geophys. Res., 42(3), 1-11. https://doi.org/10.1007/s11001-021-09440-2.
  40. Xiao, Y., Chen, H., Stuedlein, A.W., Evans, T.M., Chu, J., Cheng, L. and Aboel-Naga, H.M. (2020), "Restraint of particle breakage by biotreatment method", J. Geotech. Geoenviron. Eng., 146(11), 04020123. https://doi.org/10.1061/(asce)gt.1943-5606.0002384.
  41. Xiao, Y., Wang, C., Wu, H. and Desai, C.S. (2021), "New simple breakage index for crushable granular soils", Int. J. Geomech., 21(8), 04021136. https://doi.org/10.1007/s11001-021-09440-2.
  42. Xu, Y.R. and Xu, Y. (2021), "Numerical simulation of direct shear test of rockfill based on particle breaking", Acta Geotechnica, 16(10), 3133-3144. https://doi.org/10.1007/s11440-021-01172-2.
  43. Xu, Z.H., Wang, W.Y., Lin, P., Xiong, Y., Liu, Z.Y. and He, S.J. (2020), "A parameter calibration method for PFC simulation: Development and a case study of limestone", Geomech. Eng., 22(1), 97-108. https://doi.org/10.12989/gae.2020.22.1.097.
  44. Yang, Z., Cai, H., Dai, M., Wang, T. and Li, M. (2022), "Mechanical behavior and rock breaking mechanism of shield hob based on Particle Flow Code (PFC) method", Geotech. Geol. Eng., 1-18. https://doi.org/10.1007/s10706-022-02286-4.
  45. Yu, F. (2017), "Particle breakage and the drained shear behavior of sands", Int. J. Geomech., 17(8), 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
  46. Zhang, K.F., Zhang, S., Teng, J.D. and Sheng, D.C. (2018), "Influences of self-organization of granular materials on particle crushing based on discrete element method", Chinese J. Geotech. Eng., 40(4), 743-751.
  47. Zhang, R., Zhao, C., Yang, C., Xing, J. and Morita, C. (2021), "A comprehensive study of single-flawed granite hydraulically fracturing with laboratory experiments and flat-jointed bonded particle modeling", Comput. Geotech., 140, 104440. https://doi.org/10.1016/J.COMPGEO.2021.104440.
  48. Zhou, W., Yang, L., Ma, G., Chang, X., Lai, Z. and Xu, K. (2016), "DEM analysis of the size effects on the behavior of crushable granular materials", Granular. Matter., 18(3), 1-11. https://doi.org/ 10.1007/s10035-016-0656-7.