DOI QR코드

DOI QR Code

Radioactivity of biological samples of patients treated with 90Y-DOTATOC

  • Marija Z. Jeremic (University Clinical Center Kragujevac, Department of Nuclear Medicine) ;
  • Milovan D. Matovic (University Clinical Center Kragujevac, Department of Nuclear Medicine) ;
  • Nenad R. Mijatovic (University Clinical Center Kragujevac, Department of Nuclear Medicine) ;
  • Suzana B. Pantovic (University of Kragujevac, Faculty of Medical Sciences, Department of Physiology) ;
  • Dragana Z. Krstic (University of Kragujevac, Faculty of Science, Department of Physics) ;
  • Tatjana B. Miladinovic (University of Kragujevac, Institute for Information Technologies, Department of Sciences) ;
  • Dragoslav R. Nikezic (State University of Novi Pazar)
  • Received : 2022.07.20
  • Accepted : 2023.06.26
  • Published : 2023.10.25

Abstract

Dosimetric studies in Nuclear Medicine are very important, especially with new therapeutic methods, the number of which has increased significantly with the Theranostic approach (determining diagnostic-therapeutic pairs where similar molecules are labelled with different isotopes in order to diagnose and treat malignant diseases). Peptide receptor radionuclide therapy (PRRT) has been used successfully for many years to treat neuroendocrine tumors (NET). 90Y-DOTATOC is one of the radiopharmaceuticals used frequently in this type of therapy. In this work, blood and urine samples from 13 patients treated with 90Y-DOTATOC were measured by a liquid scintillation beta counter (LSC). Calibration of the beta counter for this type of measurement was done and all results are presented in the paper. The presented paper also provides a methodology for determining the measurement uncertainty for this type of measurement. Immediately after the administration of radiopharmaceuticals, the activity in the blood was different from 6.31% to 88.9% of the applied radioactivity, while 3 h after the termination of the application, the average value of radiopharmaceuticals in the blood was only 3.84%. The activity in the excreted urine depended on the time when the patients urinated after the therapy. It was measured that as much as 58% of the applied radioactivity was excreted in the first urine after the therapy in a patient who urinated 4.5 h after the completed application of the therapy. In most patients, the highest urine activity was in the first 10 h after the application, while the activities after that time were negligibly low. The described methodology of measuring and evaluating activity in blood and excreted urine can be applied to other radiopharmaceuticals used in nuclear medicine. It could be useful for researchers for dosimetric assessments in clinical application of PRRT.

Keywords

Acknowledgement

The authors acknowledge funding provided by the Ministry of Education, Science and Technological Development of the Republic of Serbia Grant No III41007 and Ministry of Science, Technological Development and Innovation of the Republic of Serbia Grants No 451-03-47/2023-01/200122 and 451-03-47/2023-01/200378

References

  1. A.J. Craig, I. Murray, A.M. Denis-Bacelar, Gear JI. Rojas B, L. Hossen, A. Maenhout, N. Khan, G.D. Flux, Comparison of 90Y SIRT predicted and delivered absorbed doses using a PSF conversion method, Phys. Med. 89 (2021) 1-10. https://doi.org/10.1016/j.ejmp.2021.07.026
  2. M. Elschot, B.J. Vermolen, M.G.E.H. Lam, B. de Keizer, M.A.A.J. van den Bosch, H.W.A.M. de Jong, et al., Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization, PLoS One 8 (2) (2013), e55742.
  3. Y.K. Dewaraja, S.Y. Chun, R.N. Srinivasa, R.K. Kaza, K.C. Cuneo, B.S. Majdalany, et al., Improved quantitative 90Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling, Med. Phys. 44 (12) (2017) 6364-6376. https://doi.org/10.1002/mp.12597
  4. M. Elschot, J.F.W. Nijsen, A.J. Dam, H.W.A.M. de Jong, C.A. Boswell, Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization, PLoS One 6 (11) (2011), e26174.
  5. L.P. Clarke, S.J. Cullom, R. Shaw, C. Reece, B.C. Penney, M.A. King, et al., Bremsstrahlung imaging using the gamma-camera - factors affecting attenuation, J. Nucl. Med. 33 (1) (1992) 161-166.
  6. S. Ito, H. Kurosawa, H. Kasahara, S. Teraoka, E. Ariga, S. Deji, et al., Y-90 bremsstrahlung emission computed tomography using gamma cameras, Ann. Nucl. Med. 23 (3) (2009) 257-267. https://doi.org/10.1007/s12149-009-0233-9
  7. Y. Menda, M.T. Madsen, T.M. O'Dorisio, J.J. Sunderland, G.L. Watkins, J.S. Dillon, et al., 90Y-DOTATOC dosimetry-based personalized peptide receptor radionuclide therapy, J. Nucl. Med. 59 (11) (2018) 1692-1698. https://doi.org/10.2967/jnumed.117.202903
  8. M.T. Madsen, Y. Menda, J.J. Sunderland, T.M. O'Dorisio, S. O'Dorisio, D. Dick, et al., Personalized Kidney Dosimetry for Y-90 DOTATOC Radionuclide Therapy SNMMI's 63rd Annual Meeting, June 11-15, 2016 (San Diego, California).
  9. R. Baum, H. Kulkarni, THERANOSTICS: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapyethe bad berka experience, Theranostics 2 (5) (2012) 437-447. https://doi.org/10.7150/thno.3645
  10. J.B. Cwikla, A. Sankowski, N. Seklecka, J.R. Buscombe, A. Nasierowska-Guttmejer, K.G. Jeziorski, et al., Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study, Ann. Oncol. 21 (4) (2010) 787-794. https://doi.org/10.1093/annonc/mdp372
  11. Bergsma H. PRRT & Onkology Erasmus University Rotterdam, Rotterdam The Netherlands 2017;1-260.
  12. R. Barone, F. Borson-Chazot, R. Valkema, S. Walrand, F. Chauvin, L. Gogou, et al., Patient-specific dosimetry in predicting renal toxity with (90)Y-DOTATOC: relevance of kidney volume and dose rate finding a dose-effect relationship, J. Nucl. Med. 46 (1) (2005) 99S-106S, 2005.
  13. F. Jamar, R. Barone, I. Mathieu, S. Walrand, D. Labar, P. Carlier, et al., 86Y-DOTA0-d-Phe1-Tyr3-octreotide (SMT487) - a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion, EJNMMI 30 (4) (2003) 510-518.
  14. R. Valkema, M. De Jong, W.H. Bakker, W.A.P. Breeman, P.P.M. Kooij, P.J. Lugtenburg, et al., Phase I study of peptide receptor radionuclide therapy with [In-DTPA] octreotide: the Rotterdam experience, Semin. Nucl. Med. 32 (2) (2002) 110-122. https://doi.org/10.1053/snuc/2002.31025
  15. S. Walrand, R. Barone, S. Pauwels, F. Jamar, Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts, EJNMMI 38 (7) (2011) 1270-1280. https://doi.org/10.1007/s00259-011-1744-x
  16. International Commission on Radiological Protection ICRP 140, Radiological Protection in Therapy with Radiopharmaceuticals, ICRP Publication 140, SAGE Publications Ltd, 2019, pp. 1-102.
  17. R. Valkema, S. Pauwels, L.K. Kvols, R. Barone, F. Jamar, W.H. Bakker, et al., Survival and responsafter peptide receptor radionuclide therapy with [90YDOTA0, Tyr3] octreotide in patients with advanced gastroenteropancreatic neuroendocrinetumors, Semin. Nucl. Med. 36 (2) (2006) 147-156. https://doi.org/10.1053/j.semnuclmed.2006.01.001
  18. D.J. Kwekkeboom, J. Mueller-Brand, G. Paganelli, L.B. Anthony, S. Pauwels, L.K. Kvols, et al., Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs, J. Nucl. Med. 46 (1) (2005) 62S, 6S.
  19. D.L. Bushnell, T.M. O'Dorisio, M.S. O'Dorisio, Y. Menda, R.J. Hicks, E. Van Cutsem, et al., 90Y-edotreotide for metastatic carcinoid refractory to octreotide, J. Clin. Oncol. 28 (10) (2010) 1652-1659. https://doi.org/10.1200/JCO.2009.22.8585
  20. J. Strosberg, G. El-Haddad, E. Wolin, A. Hendifar, J. Yao, B. Chasen, E. Mittra, et al., Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors, N. Engl. J. Med. 376 (2) (2017) 125-135. https://doi.org/10.1056/NEJMoa1607427
  21. L. Bodei, M. Cremonesi, M. Ferrari, M. Pacifici, C.M. Grana, M. Bartolomei, et al., Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role associated factors, EJNMMI 35 (10) (2008) 1847-1856.
  22. R. Dale, Use of the linear-quadratic radiobiological model for quantifying kidney response in targeted radiotherapy, Cancer Biother. Radiopharm. 19 (3) (2004) 363-370. https://doi.org/10.1089/1084978041425070
  23. B. Tenjovic, I. Stojkovic, J. Nikolov, N. Todorovic, J. Spasojevic, J. Agbaba, et al., 90Sr/90Y determination in milk by Cherenkov radiation after microwave digestion, J. Radioanal. Nucl. Chem. 320 (3) (2019) 679-687. https://doi.org/10.1007/s10967-019-06524-7
  24. B.B. Sadi, A. Fontaine, D. McAlister, C. Li, Emergency radiobioassay method for determination of 90Sr and 226Ra in a spot urine sample, Anal. Chem. 87 (15) (2015) 7931-7937. https://doi.org/10.1021/acs.analchem.5b01752
  25. Dj Petrovic, N. Nikolic, D. Stankovic, D. Djokic, Electrochemical separation of 90-yttrium in the electrochemical 90Sr/90Y generator and its use for radiolabelling of DOTA-conjugated somatostatin analog [DOTA0,Tyr3]Octreotate, NT& RP 27 (3) (2012) 260-268. https://doi.org/10.2298/NTRP1203260P
  26. J. Zaknun, L. Bodei, J. Mueller-Brand, M.E. Pavel, R.P. Baum, D. Horsch, et al., The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours, EJNMMI 40 (5) (2013) 800-816. https://doi.org/10.1007/s00259-012-2330-6
  27. J.A. Retzlaff, N. Tauxe, J.M. Kielz, C.F. Stroebel, Erythrocyte volume, plasma volume, and lean body mass in adult men and women, J. Hematol. 33 (5) (1969) 649-661. https://doi.org/10.1182/blood.V33.5.649.649
  28. C. Hindorf, S. Chittenden, L. Causer, V. Lewington, H. Macke, G. Flux, Dosimetry for 90Y-DOTATOC therapies in patients with neuroendocrine tumors, Cancer Biother. Radiopharm. 22 (1) (2007) 130-135. https://doi.org/10.1089/cbr.2007.306
  29. M.Z. Jeremic, M.D. Matovic, D.Z. Krstic, S.B. Pantovic, D.R. Nikezic, A five-compartment biokinetic model for 90Y-DOTATOC therapy, Med. Phys. 45 (12) (2018) 5577-5585. https://doi.org/10.1002/mp.13229