Acknowledgement
This research was supported by Field-oriented Technology Development Project for Customs Administration through National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT and Korea Customs Service (NRF-2021M3I1A1097895), and additionally, by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science & ICT (NRF-2019M2D2A1A02059814).
References
- H. Bloemen, et al., COMPTEL imaging of the galactic disk and the separation of diffuse emission and point sources, Astrophys. J. Suppl. 92 (1994) 419-423. https://doi.org/10.1086/191988
- S.C. Kappadath, et al., The preliminary cosmic diffuse gamma-ray spectrum from 800keV to 30MeV measured with COMPTEL, Astron. AstroPhys. Suppl. 120 (1996) 619-622.
- V. Schonfelder, et al., Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the Compton gamma-ray observatory, Astrophys. J. Suppl. 86 (1993) 657-692. https://doi.org/10.1086/191794
- H. Steinle, et al., COMPTEL observations of centaurus a at MeV energies in the years 1991 to 1995, Astron. Astrophys. 330 (1998) 97-107.
- S.E. Boggs, The advanced Compton telescope mission, N. Astron. Rev. 50 (7) (2006) 604-607. https://doi.org/10.1016/j.newar.2006.06.076
- V. Schonfelder, et al., Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the Compton Gamma-Ray Observatory, Astrophys. J. Suppl. (1993).
- M. Singh, An electronically collimated gamma camera for single photon emission computed tomography. Part I: theoretical considerations and design criteria, Med. Phys. 10 (4) (1983) 421-427. https://doi.org/10.1118/1.595313
- M. Singh, et al., An electronically collimated gamma camera for single photon emission computed tomography. Part II: image reconstruction and preliminary experimental measurements, Med. Phys. 10 (4) (1983) 428-435. https://doi.org/10.1118/1.595314
- J.B. Martin, et al., A ring Compton scatter camera for imaging medium energy gamma rays, IEEE Trans. Nucl. Sci. 40 (4) (1993) 972-978. https://doi.org/10.1109/23.256695
- J.W. Leblanc, et al., C-SPRINT: a prototype Compton camera system for low energy gamma ray imaging, IEEE Trans. Nucl. Sci. 45 (3) (1998) 943-949. https://doi.org/10.1109/23.682679
- M. Yamaguchi, et al., Development of head module for multi-head Si/CdTe Compton camera for medical applications, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 648 (2011) S2-S7. https://doi.org/10.1016/j.nima.2011.02.040
- P.F. Bloser, et al., The MEGA project: science goals and hardware development, N. Astron. Rev. 50 (7) (2006) 619-623. https://doi.org/10.1016/j.newar.2006.06.001
- G. Kanbach, et al., The MEGA project, N. Astron. Rev. 48 (1) (2004) 275-280. https://doi.org/10.1016/j.newar.2003.11.056
- A. Zoglauer, et al., Data analysis for the MEGA prototype, N. Astron. Rev. 48 (1) (2004) 231-235. https://doi.org/10.1016/j.newar.2003.11.049
- E. Draeger, et al., 3D prompt gamma imaging for proton beam range verification, Phys. Med. Biol. 63 (3) (2018), 035019.
- Kenji Shimazoe, et al., Development of simultaneous PET and Compton imaging using GAGG-SiPM based pixel detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 954 (2020), 161499.
- C.G. Wahl, et al., The Polaris-H imaging spectrometer, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 784 (2015) 377-381. https://doi.org/10.1016/j.nima.2014.12.110
- A. Harayama, et al., "A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances," Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., vol. 787, pp. 207-211.
- J. Kataoka, et al., Handy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arrays, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 732 (2013) 403-407. https://doi.org/10.1016/j.nima.2013.07.018
- M.L. Galloway, et al., Status of the high efficiency multimode imager, in: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012, pp. 1290-1293.
- K. Vetter, et al., Advanced concepts in multi-dimensional radiation detection and imaging, in: Proceedings of International Symposium on Radiation Detectors and Their Uses (ISRD2016), 2016, https://doi.org/10.7566/JPSCP.11.070001.
- J.G. Dreyer, et al., "Next Generation Germanium Systems for Safeguards Applications," No. LLNL-CONF-660195, Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2014.
- Jianyong Jiang, et al., A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera, J. Nucl. Sci. Technol. 53 (7) (2016) 1067-1075. https://doi.org/10.1080/00223131.2015.1089796
- R.W. Todd, et al., A proposed gamma camera, Nature 251 (1974) 132-134. https://doi.org/10.1038/251132a0
- Y. Kim, et al., Large-area Compton camera for high-speed and 3-D imaging, IEEE Trans. Nucl. Sci. 65 (11) (2018) 2817-2822. https://doi.org/10.1109/TNS.2018.2874890
- H. Lee, Large-area Hybrid Gamma Imager: Fast Localization of Gamma-Ray Sources" PhD Diss, Hanyang University, 2021.
- S. Watanabe, et al., A Si/CdTe semiconductor Compton camera, IEEE Trans. Nucl. Sci. 52 (2005) 2045-2051. https://doi.org/10.1109/TNS.2005.856995
- Y. Kim, W. Lee, Development of a virtual frisch-grid CZT detector based on the array structure, Journal of Radiation Protection and Research 45 (1) (2020) 35-44. https://doi.org/10.14407/jrpr.2020.45.1.35
- S. Agostinelli, et al., GEANT4-a simulation toolkit, Nucl. Instrum. Methods A 506 (3) (2003) 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
- McGinnis Ray RADPRO calculator® 2015, available at, www.radprocalculator.com/Gamma.aspx.
- N. Demir, Z.N. Kuluozturk, Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code, Nucl. Eng. Technol. 53 (11) (2021) 3759-3763. https://doi.org/10.1016/j.net.2021.05.017
- H. Lee, et al., Development and performance evaluation of large-area hybrid gamma imager (LAHGI), Nucl. Eng. Technol. 53 (8) (2021) 2640-2645. https://doi.org/10.1016/j.net.2021.01.036