DOI QR코드

DOI QR Code

Validation of applicability of induction bending process to P91 piping of prototype Gen-IV sodium-cooled fast reactor (PGSFR)

  • Tae-Won Na (Korea Atomic Energy Research Institute (KAERI)) ;
  • Nak-Hyun Kim (Korea Atomic Energy Research Institute (KAERI)) ;
  • Chang-Gyu Park (Korea Atomic Energy Research Institute (KAERI)) ;
  • Jong-Bum Kim (Korea Atomic Energy Research Institute (KAERI)) ;
  • Il-Kwon Oh (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2023.02.21
  • Accepted : 2023.06.12
  • Published : 2023.10.25

Abstract

The application of the induction bending process to pipe systems in various industrial fields is increasing. Recently, efforts have also been made to apply this bending process to nuclear power plants because it can innovatively reduce welded parts of the curved pipes, such as elbows. However, there have been no cases of the application of induction bending to the piping of nuclear power plants. In this study, the applicability of the P91 induction bending piping for the sodium-cooled fast reactor PGSFR was validated through high temperature low cycle fatigue tests and creep tests using P91 induction bending pipe specimens. The tests confirmed that the materials sufficiently satisfied the fatigue life and the creep rupture life requirements for P91 steel at 550 ℃ in the ASME B&PV Code, Sec. III, Div. 5. The results show that the effects of heating and bending by the induction bending process on the material properties were not significant and the induction bending process could be applicable to piping system of PGSFR well.

Keywords

Acknowledgement

This work was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (Ministry of Science and ICT) (NRF-2021M2E2A1037872).

References

  1. T. Behne, A new bending technique for large-diameter pipe, IAMI 22 (1) (1983) 34-36.
  2. H. Asao, K. Okada, M. Watanabe, H. Matsumoto, N. Umeharea, Analysis in workability of pipe bending using high frequency induction heating, in: Proceedings of The 24th International Machine Tool design and Research Conference, 1983, pp. 97-104.
  3. H. Asao, K. Okada, S. Fujishima, T. Matsumoto, Numerical analysis of bending force in tube bending using frequency induction heating-investigation of metal forming local heating, J. J. JSTP 28 (313) (1987) 150-157.
  4. B.K. Hwang, T.K. Woo, D.Y. Kim, Y.H. Moon, Y.N. Kwon, Y.S. Lee, A Study of Mechanical Properties of the High-Frequency Induction Heating for Using the Hot Pipe Bending, The Korean Society for Technology of Plasticity, 2010, pp. 406-409.
  5. ISO 15590-1, Petroleum and Natural Gas Industries -induction Bends, Fittings and Flanges for Pipeline Transportation Systems - Part 1: Induction Bends, ISO, 2001.
  6. Zuozhi Shao, Bending technique and its CAD for pipes in power station, Proceeding of the CSEE 19 (6) (1999) 85-88.
  7. J.C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, T/P23, 24, 911 and 92: new grades for advanced coal-fired power plants properties and experience, Int. J. Pres. Ves. Pip. 85 (1-2) (2008) 38-46. https://doi.org/10.1016/j.ijpvp.2007.06.011
  8. R.L. Hipley, Induction Bent Pipe in the Offshore Industry. Offshore Technology Conference (OnePetro), OTC-4197-MS, 1982.
  9. Y.H. Joo, N. Kim, D.S. Kim, S.K. Lyu, A study on the deformation of OD 245mm off-shore plant pipe by induction bending, J. Kor. Soc.Manuf. Process.Engi 21 (8) (2022) 72-78. https://doi.org/10.14775/ksmpe.2022.21.08.072
  10. J. Kondo, M. Nagae, O. Hirano, M. Takagishi, The state of the art of induction bent pipe, in: The Fourth International Offshore and Polar Engineering Conference (OnePetro), 1994. ISOPE-I-94-113.
  11. H.Y. Chang, Y.J. Oh, K.S. Kim, H.B. Park, I.G. Bae, G.H. Sung, C.S. Woo, Evaluation of design compatibility for induction heated bending pipes applied to safety related system in nuclear power plants, Corrosion Protect 12 (No.1) (2013).
  12. J. Yoo, J. Chang, J.Y. Lim, J.S. Cheon, T.H. Lee, S.K. Kim, H.K. Joo, Overall system description and safety characteristics of prototype Gen IV sodium cooled fast reactor in Korea, Nucl. Eng. Technol. 48 (5) (2016) 1059-1070. https://doi.org/10.1016/j.net.2016.08.004
  13. ASME boiler and pressure vessel code, section III, division 5, ASME. Int. (2017).
  14. H.W. Lee, J.H. Bae, M.S. Kim, C. Kim, Optimum design of pipe bending based on high-frequency induction heating using dynamic reverse moment, Int. J. Precis. Eng. Manuf. 12 (6) (2011) 1051-1058. https://doi.org/10.1007/s12541-011-0140-6
  15. J.S. Kim, K.S. Kim, Y.J. Oh, H.Y. Chang, H.B. Park, Investigation of residual stress distributions of induction heating bended austenitic stainless steel (316 series) piping, Trans.Korean . Soc.Mech. Eng.A 38 (7) (2014) 809-815. https://doi.org/10.3795/KSME-A.2014.38.7.809
  16. J.S. Kim, K.S. Kim, Y.J. Oh, C.Y. Oh, Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis, Nucl. Eng. Technol. 51 (5) (2019) 1451-1469. https://doi.org/10.1016/j.net.2019.03.007
  17. S.Y. Lee, J.W. Kim, Y.J. Oh, Evaluation of Tensile Properties for TP316 Stainless Steel Pipe Bends Manufactured by High-Frequency Induction Heating Process, 2013.
  18. M. Shin, Y.S. Kim, K. Kim, H. Chang, H. Park, G. Sung, Effect of induction heat bending process on the corrosion properties of 316 stainless steel pipes for nuclear power plant, Corrosion Sci. Technol. 13 (3) (2014) 87-94. https://doi.org/10.14773/cst.2014.13.3.87
  19. Mi Yeon Lee, Evaluation of Mechanical Properties of SA312 TP316 and SA312 TP304 Stainless Steels Pipe Bends Fabricated by Induction Bending, 2016 (M.S. THESIS).
  20. M.Y. Lee, J.W. Kim, T.S. Kim, Evaluation of Material Properties in the TP347 Stainless Steel Pipe Bends Manufactured by Induction Bending, 2015.
  21. J. Lee, M.G. Seo, J.D. Hong, T.S. Kim, C. Jang, Low cycle fatigue behavior of hot-bent 347 stainless steel in a simulated PWR water environment, J. Mech. Sci. Technol. 30 (11) (2016) 4931-4936. https://doi.org/10.1007/s12206-016-1012-x
  22. K.T. Kim, M.C. Shin, H.Y. Chang, H.B. Park, G.H. Sung, Y.S. Kim, Effects of induction heat bending and heat treatment on the boric acid corrosion of low alloy steel pipe for nuclear power plants, Kor.J.Met. Mater. 54 (11) (2016) 817-825. https://doi.org/10.3365/KJMM.2016.54.11.817
  23. Y.S. Lee, J.S. Lim, Y.N. Kwon, Y.H. Moon, Fatigue characteristics of small radius pipe fabricated by pipe bending with induction local heating, Procedia Eng. 10 (2011) 3333-3338. https://doi.org/10.1016/j.proeng.2011.04.550
  24. N.H. Kim, J.B. Kim, S.K. Kim, Applicability of the induction bending process to the P91 pipe of the PGSFR, Nucl. Eng. Technol. 53 (5) (2021) 1580-1586. https://doi.org/10.1016/j.net.2020.10.021
  25. ASME B16.9, Factory-made Wrought Buttwelding Fittings, The American Society of Mechanical Engineers, 2001.
  26. ASME boiler and pressure vessel code, section II, Part A, ASME. Int. (2017).
  27. ASME boiler and pressure vessel code, section III, division 1, subsection NB, ASME. Int. (2017).
  28. ASME B16.9, Factory-made Wrought Buttwelding Fittings, The American Society of Mechanical Engineers, 2001.
  29. PFI standard ES-24, Pipe Bending Methods, Tolerances, Process and Material Requirements, Pipe Fabrication Institute, 2010.
  30. ASTM E 606-04, Standard Practice for Strain-Controlled Fatigue Testing, ASTM International, 2004.
  31. ASTM E 139-11, Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials, ASTM International, 2018.
  32. M. Li, W. Soppet, S. Majumdar, D. Rink, K. Natesan, Final Report on Improved Creep-Fatigue Models on Advanced Materials for SFR Applications, 2011. ANL-ARC-204.