References
- H. Yao, G. Chen, K. Lu, Y. Wu, W. Tian, G. Su, S. Qiu, Study on the systematic thermal-hydraulic characteristics of helical coil once-through steam generator, Ann. Nucl. Energy 154 (2021), 108096.
- G. Zhao, Y. Zhao, J. Liu, Integral control strategy between the casing once-through steam generator and the turbine, Energy Conserv. Technol. 220 (2020) 162-166.
- Y. Zhang, M. Zheng, Z. Ma, J. Wu, Dynamic modeling ,simulation and control of helical coiled once-through steam generator, Appl. Sci. Technol. 313 (2020) 71-77.
- S. Cheng, C. Li, M. Peng, X. Liu, Research of pressure control based on artificial immune control of once -through steam generator, Nucl. Power Eng. 36 (2015) 62-65.
- Z. Chen, L. Liao, L. Liu, W. Li, Study on application of T-S fuzzy neural method in once-through steam generator feedwater control, Nucl. Power Eng. 33 (2012) 20-23.
- X. Hu, T. Yang, H. Qian, Research on control strategy of once-through steam generator for integrated reactor, J. Shanghai Univ. Electr. Power 37 (2021) 115-120.
- R.S. Sutton, A.G. Barto, R.J. Williams, Reinforcement learning is direct adaptive optimal control, IEEE Control Syst. Mag. 12 (1992) 19-22.
- C.J.C.H. Watkins, P. Dayan, Q-learn. Mach. Learn. 8 (1992) 279-292.
- T.P. Lillicrap, J.J. Hunt, A. Pritzel, et al., Continuous Control with Deep Reinforcement Learning, 2018, pp. 1-16. IN201847005934A.
- X. Wang, L. Zhang, T. Lin, C. Zhao, K. Wang, Z. Chen, Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning, Robot. Comput. Integrated Manuf. 77 (2022) 102324.
- X. Deng, Y. Zhang, H. Qi, Towards optimal HVAC control in non-stationary building environments combining active change detection and deep reinforcement learning, Build. Environ. 211 (2022), 108680, 1-108680.16.
- X. Qiu, C. Gao, K. Wang, W. Jing, Attitude control of a moving MassA-ctuated UAV based on deep reinforcement learning, J. Aero. Eng. 35 (2022), 4021133.1-4021133.12.
- R.B. Grando, J.D. Jesus, V.A. Kich, et al., Double critic deep reinforcement learning for mapless 3D navigation of unmanned aerial vehicles, J. Intell. Rob. Syst. 104 (2022) 29-43. https://doi.org/10.1007/s10846-021-01568-y
- R. Zhang, Q. Lv, J. Li, J. Bao, T. Liu, S. Liu, A reinforcement learning method for human-robot collaboration in assembly tasks, Robot. Comput. Integrated Manuf. 73 (2022) 1-10.
- J.K. Park, T.K. Kim, S.H. Seong, Providing support to operators for monitoring safety functions using reinforcement learning, Prog. Nucl. Energy 118 (2022), 103123.
- T. Nishida, Data transformation and normalization, Rinsho Byori the Japanese Journal of Clinical Pathology 58 (2010) 990-997.
- M.S. David, S. Renjith, Comparison of word embeddings in text classification based on RNN and CNN, IOP Conf. Ser. Mater. Sci. Eng. 1187 (2021) 247-255.
- Q. Ye, Y. Wang, X. Li, J. Guo, Y. Huang, B. Yang, A power load prediction method of associated industry chain production resumption based on multitask LSTM, Energy Rep. 8 (2022) 239-249. https://doi.org/10.1016/j.egyr.2022.01.110
- A. Zeng, W. Nie, Stock recommendation system based on deep bidirectional LSTM, Comput. Sci. 46 (2019) 84-89.
- J. Ren, J. Wang, C. Wang, Stock forecasting system based on elstm-l model, Stat. Decis. 35 (2019) 160-164.
- I. Papatsouma, N. Farmakis, Approximating symmetric distributions via sampling and coefficient of variation, Commun. Stat. 49 (2020) 61-77. https://doi.org/10.1080/03610926.2018.1529244
- V. Mnih, K. Kavukcuoglu, D. Silver, et al., Playing atari with deep reinforcement learning, CoRR abs/1312 5602 (2013) 1-9.
- T.P. Lillicrap, J.J. Hunt, A. Pritzel, et al., Continuous Control with Deep Reinforcement Learning, Computerence, 2015, pp. 1-16.
- R.J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, Mach. Learn. 8 (1992) 229-256.
- J. Schulman, et al., Trust region policy optimization, Int. Conf. Mach. Learn. 3 (2016) 244-259.
- P. Hamalainen, et al., PPO-CMA: proximal policy optimization with covariance matrix adaptation, IEEE 30th Int. Workshop on Mach. Learn. Signal Proc. (2020) 1-6.
- J. Baxter, P.L. Bartlett, Infinite-horizon policy-gradient estimation, J. Artif. Intell. Res. 15 (2019) 319-350.
- D. Yan, C. Xi, Rein Houthooft, Bench marking deep reinforcement learning for continuous control, Int. Conf. Mach. Learn. 3 (2016) 2001-2014.
- Y. Wu, Z. Yu, C. Li, M. He, B. Hua, Z. Chen, Reinforcement learning in dual-arm trajectory planning for a free-floating space robot, Aero. Sci. Technol. 98 (2020), 105657.