Acknowledgement
This research is funded by Hanoi University of Civil Engineering (HUCE-Vietnam) under grant number 28-2022/KHXD-TĐ.
References
- Bai, J., Zhang, J., Du, K. and Jin, S. (2020), "A simplified seismic design method for low-rise dual frame-steel plate shear wall structures", Steel Compos. Struct., 37(4), 447-462 http://dx.doi.org/10.12989/scs.2020.37.4.447.
- Baker, W.E. (1973), Explosions in Air, University of Texas Press, Austin, TX.
- Bengar, H.A., Kiadehi, M.A., Shayanfar, J. and Nazari, M. (2020), "Effective flexural rigidities for RC beams and columns with steel fiber", Steel Compos. Struct., 34(3), 453-465. http://dx.doi.org/10.12989/scs.2020.34.3.453.
- Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992), "A training algorithm for optimal margin classifiers", Proc. Fifth Annu. Work. Comput. Learn. Theory.
- Breiman, L., Friedman, J., Stone, C.J. and Olshen, R.A. (1984), Classification and Regression Trees, Chapman and Hall/ CRC press.
- CEB-FIP (1993), Model Code 1990: Design Code.
- Chen, T. and Guestrin, C. (2016), "XGBoost: A scalable tree boosting System", CoRR. abs/1603.0.
- Corporation, L.S.T. (2006), LS-DYNA Theory Manual. California.
- Corporation, L.S.T. (2007), LS-DYNA Keyword User's Manual, Version 971. California.
- Doan, Q.H., Le,T. and Thai, D.K. (2021), "Optimization strategies of neural networks for impact damage classification of RC panels in a small dataset", Appl. Soft Comput. 102. https://doi.org/10.1016/j.asoc.2021.107100.
- Dong, W., Huang, Y., Lehane, B. and Ma, G. (2020), "XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring", Autom. Constr., 114. https://doi.org/10.1016/j.autcon.2020.103155.
- Foglar, M. and Kovar, M. (2013), "Conclusions from experimental testing of blast resistance of FRC and RC bridge decks", Int. J. Impact. Eng., 59, 18-28. https://doi.org/10.1016/j.ijimpeng.2013.03.008.
- Foglar, M., Hajek, R., Fladr, J., Pachman, J. and Stoller, J. (2017), "Full-scale experimental testing of the blast resistance of HPFRC and UHPFRC bridge decks", Construct. Build. Mater., 145, 588-601. https://doi.org/10.1016/j.conbuildmat.2017.04.054.
- Foglar, M., Hajek, R., Kovar, M. and Stoller, J. (2015). "Blast performance of RC panels with waste steel fibers", Construct. Build. Mater., 94, 536-546. https://doi.org/10.1016/j.conbuildmat.2015.07.082.
- Hajek, R., Fladr, J., Pachman, J., Stoller, J. and Foglar, M. (2019), "An experimental evaluation of the blast resistance of heterogeneous concrete-based composite bridge decks", Eng. Struct., 179, 204-210. https://doi.org/10.1016/j.engstruct.2018.10.070.
- Hajek, R., Foglar, M. and Kohoutkova, A. (2017), "Recent development in blast performance of fiber-reinforced concrete. IOP Conf. Series: Materials Science and Engineering", IOP Publishing. 246.
- Ho, T.K. (1995), "Random decision forests", Proc. 3rd Int. Conf. Doc. Anal. Recognit., IEEE.
- Hou, X., Liu, K., Cao, S. and Rong, Q. (2019). "Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads", Steel Compos. Struct., 33(3), 333-346. http://dx.doi.org/10.12989/scs.2019.33.3.333.
- Huang, Y. and Zhao, L. (2019), "Review on landslide susceptibility mapping using support vector machines", Catena. 165, 520-529. https://doi.org/10.1016/j.catena.2018.03.003.
- Lee, S.C., Oh, J.H. and Cho, J.Y. (2015), "Compressive behavior of fiber-reinforced concrete with end-hooked steel fiber", Materials, 8, 1442-1458. https://doi.org/10.3390/ma8041442.
- Li, J. and Hao, H. (2014), "Numerical study of concrete spall damage to blast loads", Int. J. Impact Eng., 68, 41-55. https://doi.org/10.1016/j.ijimpeng.2014.02.001.
- Lin, X. (2018), "Numerical simulation of blast responses of ultra-high performance fiber reinforced concrete panels with strain-rate effect", Construct. Build. Mater., 176, 371-382. https://doi.org/10.1016/j.conbuildmat.2018.05.066.
- Ling, H., Qian, C., Kang, W., Liang, C. and Chen, H. (2019), "Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment", Construct. Build. Mater., 206, 355-363. https://doi.org/10.1016/j.conbuildmat.2019.02.071.
- Liu, C., Wu, X., Wakil, K., Jermsittiparsert, K., Ho, S.L., Alabduljabbar, H., Alaskar, A., Alrshoudi, F., Alyousef, R. and Mohamed, A.M. (2020), "Computational estimation of the earthquake response for fibre reinforced concrete rectangular column", Steel Compos. Struct., 34(5), 743-767. http://dx.doi.org/10.12989/scs.2020.34.5.743.
- Liu, J. L., Xu, L.H. and Li, Z.X. (2020), "Experimental study on component performance in steel plate shear wall with self-centering braces", Steel Compos. Struct., 37(3), 341-351. http://dx.doi.org/10.12989/scs.2020.37.3.341.
- Mao, L., Barnett, S., Begg, D., Schleyer, G. and Wight, G. (2014), "Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading", Int. J. Impact. Eng. 64, 91-100. https://doi.org/10.1016/j.ijimpeng.2013.10.003.
- Mao, L., Barnett, S.J., Tyas, A., Warren, J., Schleyer, G.K. and Zaini, S.S. (2015), "Response of small scale ultra high performance fibre reinforced concrete slabs to blast loading", Construct. Build. Mater., 93, 822-830. https://doi.org/10.1016/j.conbuildmat.2015.05.085.
- McVay, M.K. (1988), Spall damage of concrete structures - Technical Report SL-88-22, Structures Laboratory, Department of the Army.
- Morishita, M., Tanaka, H., Ando, T. and Hagiya, H. (2004), "Effects of concrete strength and reinforcing clear distance on the damage of reinforced concrete slabs subjected to contact detonations", Concrete Res. Technol., 15(2), 89-98. https://doi.org/10.3151/crt1990.15.2_89.
- Naaman, A.E. (1972), A Statistical Theory of Strength for Fiber Reinforced Concrete, Ph.D Thesis, Massachusetts Institute of Technology.
- Nam, J., Kim, H. and Kim, G. (2017), "Experimental investigation on the blast resistance of fiber-reinforced cementitious composite panels subjected to contact explosions", Int. J. Concrete Struct. Mater., 11(1), 29-43. https://doi.org/10.1007/s40069-016-0179-y.
- Pantelides, C.P., Garfield, T.T., Richins, W.D., Larson, T.K. and Blakeley, J.E. (2014), "Reinforced concrete and fiber reinforced concrete panels subjected to blast detonations and post-blast static tests", Eng. Struct., 76, 24-33. https://doi.org/10.1016/j.engstruct.2014.06.040.
- Remennikov, A., Ngo, T., Mohotti, D., Uy, B. and Netherton, M. (2017), "Experimental investigation and simplified modeling of response of steel plates subjected to close-in blast loading from spherical liquid explosive charges", Int. J. Impact Eng., 101, 78-89. https://doi.org/10.1016/j.ijimpeng.2016.11.013.
- Schwer, L. (2010), An Introduction to the Winfrith Concrete Model. Schwer Engineering & Consulting Services, California, USA. Streamlit Inc., n. d. https://streamlit.io/.
- Thai, D.K. and Kim, S.E. (2018), "Numerical investigation of the damage of RC members subjected to blast loading", Eng. Fail. Anal., 92, 350-367. https://doi.org/10.1016/j.engfailanal.2018.06.001.
- Thai, D.K., Nguyen, D.L. and Nguyen, D.D. (2020), "A calibration of the material model for FRC", Construct. Build. Mater., 254. https://doi.org/10.1016/j.conbuildmat.2020.119293.
- Thai, D.K., Nguyen, D.L., Pham, T.H. and Doan, Q.H. (2021), "Prediction of residual strength of FRC columns under blast loading using the FEM method and regression approach", Construct. Build. Mater., 276, 122253. https://doi.org/10.1016/j.conbuildmat.2021.122253.
- Thai, D.K., Pham, T.H. and Nguyen, D.L. (2019), "Damage assessment of reinforced concrete columns retrofitted by steel jacket under blast loading", Struct. Design Tall. Spec. Build. 29(1), 1-15. https://doi.org/10.1002/tal.1676.
- Thai, D.K., Tu, T.M., Bui, T.Q. and Bui, T.T. (2019), "Gradient tree boosting machine learning on predicting the failure modes of the RC panels under impact loads", Eng. Comput., 37(1), 597-608. https://doi.org/10.1007/s00366-019-00842-w.
- Yao, W., Sun, W., Shi, Z., Chen, B., Chen, L. and Feng, J. (2020). "Blast-Resistant Performance of Hybrid Fiber-Reinforced Concrete (HFRC) Panels Subjected to Contact Detonation", Appl. Sci., 10(1), 1-17. https://doi.org/10.3390/app10010241.
- Zhang, H. and Chen, Z. (2021), "Comparison and prediction of seismic performance for shear walls composed with fiber reinforced concrete", Adv. Concrete Construct., 11(2), 111-126. http://dx.doi.org/10.12989/acc.2021.11.2.