DOI QR코드

DOI QR Code

Empirical evaluations for predicting the damage of FRC wall subjected to close-in explosions

  • Duc-Kien Thai (Department of Civil and Environmental Engineering, Sejong University) ;
  • Thai-Hoan Pham (Department of Concrete Structures, National University of Civil Engineering) ;
  • Duy-Liem Nguyen (Department of Civil Engineering and Applied Mechanics, Ho Chi Minh City University of Technology and Education) ;
  • Tran Minh Tu (Faculty of Industrial and Civil Engineering, National University of Civil Engineering) ;
  • Phan Van Tien (Department of Civil Engineering, Vinh University)
  • Received : 2021.10.18
  • Accepted : 2023.10.04
  • Published : 2023.10.10

Abstract

This paper presents a development of empirical evaluations, which can be used to evaluate the damage of fiber-reinforced concrete composites (FRC) wall subjected to close-in blast loads. For this development, a combined application of numerical simulation and machine learning approaches are employed. First, finite element modeling of FRC wall under blast loading is developed and verified using experimental data. Numerical analyses are then carried out to investigate the dynamic behavior of the FRC wall under blast loading. In addition, a data set of 384 samples on the damage of FRC wall due to blast loads is then produced in order to develop machine learning models. Second, three robust machine learning models of Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) are employed to propose empirical evaluations for predicting the damage of FRC wall. The proposed empirical evaluations are very useful for practical evaluation and design of FRC wall subjected to blast loads.

Keywords

Acknowledgement

This research is funded by Hanoi University of Civil Engineering (HUCE-Vietnam) under grant number 28-2022/KHXD-TĐ.

References

  1. Bai, J., Zhang, J., Du, K. and Jin, S. (2020), "A simplified seismic design method for low-rise dual frame-steel plate shear wall structures", Steel Compos. Struct., 37(4), 447-462 http://dx.doi.org/10.12989/scs.2020.37.4.447.
  2. Baker, W.E. (1973), Explosions in Air, University of Texas Press, Austin, TX.
  3. Bengar, H.A., Kiadehi, M.A., Shayanfar, J. and Nazari, M. (2020), "Effective flexural rigidities for RC beams and columns with steel fiber", Steel Compos. Struct., 34(3), 453-465. http://dx.doi.org/10.12989/scs.2020.34.3.453.
  4. Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992), "A training algorithm for optimal margin classifiers", Proc. Fifth Annu. Work. Comput. Learn. Theory.
  5. Breiman, L., Friedman, J., Stone, C.J. and Olshen, R.A. (1984), Classification and Regression Trees, Chapman and Hall/ CRC press.
  6. CEB-FIP (1993), Model Code 1990: Design Code.
  7. Chen, T. and Guestrin, C. (2016), "XGBoost: A scalable tree boosting System", CoRR. abs/1603.0.
  8. Corporation, L.S.T. (2006), LS-DYNA Theory Manual. California.
  9. Corporation, L.S.T. (2007), LS-DYNA Keyword User's Manual, Version 971. California.
  10. Doan, Q.H., Le,T. and Thai, D.K. (2021), "Optimization strategies of neural networks for impact damage classification of RC panels in a small dataset", Appl. Soft Comput. 102. https://doi.org/10.1016/j.asoc.2021.107100.
  11. Dong, W., Huang, Y., Lehane, B. and Ma, G. (2020), "XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring", Autom. Constr., 114. https://doi.org/10.1016/j.autcon.2020.103155.
  12. Foglar, M. and Kovar, M. (2013), "Conclusions from experimental testing of blast resistance of FRC and RC bridge decks", Int. J. Impact. Eng., 59, 18-28. https://doi.org/10.1016/j.ijimpeng.2013.03.008.
  13. Foglar, M., Hajek, R., Fladr, J., Pachman, J. and Stoller, J. (2017), "Full-scale experimental testing of the blast resistance of HPFRC and UHPFRC bridge decks", Construct. Build. Mater., 145, 588-601. https://doi.org/10.1016/j.conbuildmat.2017.04.054.
  14. Foglar, M., Hajek, R., Kovar, M. and Stoller, J. (2015). "Blast performance of RC panels with waste steel fibers", Construct. Build. Mater., 94, 536-546. https://doi.org/10.1016/j.conbuildmat.2015.07.082.
  15. Hajek, R., Fladr, J., Pachman, J., Stoller, J. and Foglar, M. (2019), "An experimental evaluation of the blast resistance of heterogeneous concrete-based composite bridge decks", Eng. Struct., 179, 204-210. https://doi.org/10.1016/j.engstruct.2018.10.070.
  16. Hajek, R., Foglar, M. and Kohoutkova, A. (2017), "Recent development in blast performance of fiber-reinforced concrete. IOP Conf. Series: Materials Science and Engineering", IOP Publishing. 246.
  17. Ho, T.K. (1995), "Random decision forests", Proc. 3rd Int. Conf. Doc. Anal. Recognit., IEEE.
  18. Hou, X., Liu, K., Cao, S. and Rong, Q. (2019). "Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads", Steel Compos. Struct., 33(3), 333-346. http://dx.doi.org/10.12989/scs.2019.33.3.333.
  19. Huang, Y. and Zhao, L. (2019), "Review on landslide susceptibility mapping using support vector machines", Catena. 165, 520-529. https://doi.org/10.1016/j.catena.2018.03.003.
  20. Lee, S.C., Oh, J.H. and Cho, J.Y. (2015), "Compressive behavior of fiber-reinforced concrete with end-hooked steel fiber", Materials, 8, 1442-1458. https://doi.org/10.3390/ma8041442.
  21. Li, J. and Hao, H. (2014), "Numerical study of concrete spall damage to blast loads", Int. J. Impact Eng., 68, 41-55. https://doi.org/10.1016/j.ijimpeng.2014.02.001.
  22. Lin, X. (2018), "Numerical simulation of blast responses of ultra-high performance fiber reinforced concrete panels with strain-rate effect", Construct. Build. Mater., 176, 371-382. https://doi.org/10.1016/j.conbuildmat.2018.05.066.
  23. Ling, H., Qian, C., Kang, W., Liang, C. and Chen, H. (2019), "Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment", Construct. Build. Mater., 206, 355-363. https://doi.org/10.1016/j.conbuildmat.2019.02.071.
  24. Liu, C., Wu, X., Wakil, K., Jermsittiparsert, K., Ho, S.L., Alabduljabbar, H., Alaskar, A., Alrshoudi, F., Alyousef, R. and Mohamed, A.M. (2020), "Computational estimation of the earthquake response for fibre reinforced concrete rectangular column", Steel Compos. Struct., 34(5), 743-767. http://dx.doi.org/10.12989/scs.2020.34.5.743.
  25. Liu, J. L., Xu, L.H. and Li, Z.X. (2020), "Experimental study on component performance in steel plate shear wall with self-centering braces", Steel Compos. Struct., 37(3), 341-351. http://dx.doi.org/10.12989/scs.2020.37.3.341.
  26. Mao, L., Barnett, S., Begg, D., Schleyer, G. and Wight, G. (2014), "Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading", Int. J. Impact. Eng. 64, 91-100. https://doi.org/10.1016/j.ijimpeng.2013.10.003.
  27. Mao, L., Barnett, S.J., Tyas, A., Warren, J., Schleyer, G.K. and Zaini, S.S. (2015), "Response of small scale ultra high performance fibre reinforced concrete slabs to blast loading", Construct. Build. Mater., 93, 822-830. https://doi.org/10.1016/j.conbuildmat.2015.05.085.
  28. McVay, M.K. (1988), Spall damage of concrete structures - Technical Report SL-88-22, Structures Laboratory, Department of the Army.
  29. Morishita, M., Tanaka, H., Ando, T. and Hagiya, H. (2004), "Effects of concrete strength and reinforcing clear distance on the damage of reinforced concrete slabs subjected to contact detonations", Concrete Res. Technol., 15(2), 89-98. https://doi.org/10.3151/crt1990.15.2_89.
  30. Naaman, A.E. (1972), A Statistical Theory of Strength for Fiber Reinforced Concrete, Ph.D Thesis, Massachusetts Institute of Technology.
  31. Nam, J., Kim, H. and Kim, G. (2017), "Experimental investigation on the blast resistance of fiber-reinforced cementitious composite panels subjected to contact explosions", Int. J. Concrete Struct. Mater., 11(1), 29-43. https://doi.org/10.1007/s40069-016-0179-y.
  32. Pantelides, C.P., Garfield, T.T., Richins, W.D., Larson, T.K. and Blakeley, J.E. (2014), "Reinforced concrete and fiber reinforced concrete panels subjected to blast detonations and post-blast static tests", Eng. Struct., 76, 24-33. https://doi.org/10.1016/j.engstruct.2014.06.040.
  33. Remennikov, A., Ngo, T., Mohotti, D., Uy, B. and Netherton, M. (2017), "Experimental investigation and simplified modeling of response of steel plates subjected to close-in blast loading from spherical liquid explosive charges", Int. J. Impact Eng., 101, 78-89. https://doi.org/10.1016/j.ijimpeng.2016.11.013.
  34. Schwer, L. (2010), An Introduction to the Winfrith Concrete Model. Schwer Engineering & Consulting Services, California, USA. Streamlit Inc., n. d. https://streamlit.io/.
  35. Thai, D.K. and Kim, S.E. (2018), "Numerical investigation of the damage of RC members subjected to blast loading", Eng. Fail. Anal., 92, 350-367. https://doi.org/10.1016/j.engfailanal.2018.06.001.
  36. Thai, D.K., Nguyen, D.L. and Nguyen, D.D. (2020), "A calibration of the material model for FRC", Construct. Build. Mater., 254. https://doi.org/10.1016/j.conbuildmat.2020.119293.
  37. Thai, D.K., Nguyen, D.L., Pham, T.H. and Doan, Q.H. (2021), "Prediction of residual strength of FRC columns under blast loading using the FEM method and regression approach", Construct. Build. Mater., 276, 122253. https://doi.org/10.1016/j.conbuildmat.2021.122253.
  38. Thai, D.K., Pham, T.H. and Nguyen, D.L. (2019), "Damage assessment of reinforced concrete columns retrofitted by steel jacket under blast loading", Struct. Design Tall. Spec. Build. 29(1), 1-15. https://doi.org/10.1002/tal.1676.
  39. Thai, D.K., Tu, T.M., Bui, T.Q. and Bui, T.T. (2019), "Gradient tree boosting machine learning on predicting the failure modes of the RC panels under impact loads", Eng. Comput., 37(1), 597-608. https://doi.org/10.1007/s00366-019-00842-w.
  40. Yao, W., Sun, W., Shi, Z., Chen, B., Chen, L. and Feng, J. (2020). "Blast-Resistant Performance of Hybrid Fiber-Reinforced Concrete (HFRC) Panels Subjected to Contact Detonation", Appl. Sci., 10(1), 1-17. https://doi.org/10.3390/app10010241.
  41. Zhang, H. and Chen, Z. (2021), "Comparison and prediction of seismic performance for shear walls composed with fiber reinforced concrete", Adv. Concrete Construct., 11(2), 111-126. http://dx.doi.org/10.12989/acc.2021.11.2.