• Title/Summary/Keyword: close-in explosion

Search Result 29, Processing Time 0.024 seconds

조사연구-분진폭발에 대한 소고

  • Lee, Ji-Seop
    • Fire Protection Technology
    • /
    • s.19
    • /
    • pp.29-35
    • /
    • 1995
  • This decument, translated and rearranged deseribes the features of dust explosion and the factors which have an important effect upon the hazard of dust explosion on the purpose of prevention the disaster caused by dust explosion. The dust explosion exist close to our common life as latently, but it seems to be overlooking in com-mon, regretably Tr need to be evoked.

  • PDF

Influence of explosives distribution on coal fragmentation in top-coal caving mining

  • Liu, Fei;Silva, Jhon;Yang, Shengli;Lv, Huayong;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • Due to certain geological characteristics (high thickness, rocky properties), some underground coal mines require the use of explosives. This paper explores the effects of fragmentation of different decks detonated simultaneously in a single borehole with the use of numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include an erosion criterion to simulate the cracks generated by the explosion. As expected, the near-borehole area was damaged by compression stresses, while far zones and the free surface of the boundary were subjected to tensile damage. With the increase of the number of decks in the borehole, different changes in the fracture pattern were observed, and the superposition effects of the stress wave became evident, affecting the fragmentation results. The superposition effect is more evident in close distances to the borehole, and its effect attenuates when the distance to the borehole increase.

TIME-DEPENDENT DUST FORMATION IN NOVAE

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • The dust formation processes in novae are investigated with close attention to recent infrared observations. Using mainly the classical nucleation theory, we have calculated the time scales of dust formation and growth in the environments of novas. Those time scales roughly the typical observations. We have classified the dust-forming novae into three classes according to their explosion properties and the thermodynamic properties of dust grains. Oxygen grains form much later than carbon grains because of their thermodynamic properties. The effect of grain formation to the efficiency of stellar winds to drive the material outward is tested with newly obtained Planck mean values of dust grains.

  • PDF

A new SDOF method of one-way reinforced concrete slab under non-uniform blast loading

  • Wang, Wei;Zhang, Duo;Lu, Fangyun;Liu, Ruichao
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.595-613
    • /
    • 2013
  • A new effective model for calculation of the equivalent uniform blast load for non-uniform blast load such as close-in explosion of a one-way square and rectangle reinforced concrete slab is proposed in this paper. The model is then validated using single degree of freedom (SDOF) system with the experiments and blast tests for square slabs and rectangle slabs. Test results showed that the model is accurate in predicting the damage level on the tested RC slabs under the given explosive charge weight and stand-off distance especially for close-in blast load. The results are also compared with those obtained by conventional SDOF analysis and finite element (FE) analysis using solid elements. It is shown that the new model is more accurate than the conventional SDOF analysis and is running faster than the FE analysis.

Improvement of Charge Strength Guideline for Multi-Energy Method by Comparing Vapor Cloud Explosion Cases (증기운 폭발 사례 비교를 통한 멀티에너지법의 폭발강도계수 지침 개선)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.355-362
    • /
    • 2021
  • Various blast pressure calculation methods have been developed for predicting the explosion pressure of vapor cloud explosions. Empirical methods include the TNT equivalent method, and multi-energy method. The multi-energy method uses a charge strength that considers environmental factors. Although the Kinsella guideline was provided to determine the charge strength, there are limitations such as guidelines related to ignition sources. In this study, we proposed an improved charge strength guideline, by subdividing the ignition source intensity and expanding the type classification through literature analysis. To verify the improved charge strength guideline, and to compare it with the result obtained using the Kinsella guideline, four vapor cloud explosion cases which could be used to estimate the actual blast pressure were investigated. As a result, it was confirmed that the Kinsella guidelines showed an inaccurate, that is, wider pressure than the actual estimated blast pressure. However, the improved charge strength guideline enabled the selection of the intensity of the ignition source, and more subdivided types through the expansion of classification, hence it was possible to calculate the blast pressure relatively close to that of the actual case.

Empirical evaluations for predicting the damage of FRC wall subjected to close-in explosions

  • Duc-Kien Thai;Thai-Hoan Pham;Duy-Liem Nguyen;Tran Minh Tu;Phan Van Tien
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.65-79
    • /
    • 2023
  • This paper presents a development of empirical evaluations, which can be used to evaluate the damage of fiber-reinforced concrete composites (FRC) wall subjected to close-in blast loads. For this development, a combined application of numerical simulation and machine learning approaches are employed. First, finite element modeling of FRC wall under blast loading is developed and verified using experimental data. Numerical analyses are then carried out to investigate the dynamic behavior of the FRC wall under blast loading. In addition, a data set of 384 samples on the damage of FRC wall due to blast loads is then produced in order to develop machine learning models. Second, three robust machine learning models of Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) are employed to propose empirical evaluations for predicting the damage of FRC wall. The proposed empirical evaluations are very useful for practical evaluation and design of FRC wall subjected to blast loads.

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation (MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.13-24
    • /
    • 2019
  • This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.

Characteristics of Induced Voltage in Loop Structures from High-frequency Radiation Antenna (고주파 방사에 의한 루프형 구조물에서의 유도전압 특성)

  • Choi, Sang-Won;Kwon, Hyuk-Myun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.49-54
    • /
    • 2012
  • There is a possibility that electrical sparks may occur at discontinuities in metallic structures from distance of close to high power radio/radar transmitters. Voltage may be induced on these metallic structures by the radio-frequency transmitter. In this case, a person who comes into contact with these structure may be undergone a severe electrical shock. In this paper, assessment of the electrical shock and ignition hazards was investigated through experimental which are consisted radio transmitter and metallic loop-type structure in shield room. We measured that the induced voltage was highest at 61 MHz of transmission frequency, and confirmed the possibility of electric shock and explosion induced by a voltage or spark. But it is needed additional research where is opened site.

An Evaluation on Electrical Shock and Ignition Hazards in Metallic Structures Acting Receiving Antennas of Radio-frequency Radiation (고주파 방사에 대한 수신 안테나로 작용하는 구조물에서의 전격 및 점화 위험성 평가)

  • Choi, Sang-Won;Lee, Hyung-Soo;Lee, Gwan-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2280-2283
    • /
    • 1999
  • Close to high power radio/radar transmitters, there is a possibility that electrical sparks may occur at discontinuities in metallic structures. If these structures are in an area where flammable mixtures are present, there is a danger that fire or explosion may happen by these sparks. Voltage may be induced on these metallic structures by the radio-frequency transmitter. In this case, a person who comes into contact with these structure may be undergone a severe electrical shock. In this paper, assessment of the these hazards was investigated through experimental and evaluation for actual tower cranes near AM radio transmitters.

  • PDF

A Study of the Seocheon Fireball Explosion on September 23, 2020 (2020년 9월 23일 서천 화구 폭발 관측 연구)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.688-699
    • /
    • 2021
  • On September 23, 2020, at 1:39 a.m., a bright fireball above Seocheon was observed across the country. Two fireball explosions were identified in the images of the All-Sky Camera (ASC), and the shock waves were recorded at seismic and infrasound stations in the southwestern Korean Peninsula. The location of the explosion was estimated by a Bayesian-based location method using the arrival times of the fireball-associated seismic and infrasound signals at 17 stations. Realistic azimuth- and rang-dependent propagation speeds of sound waves were incorporated into the location method to increase the reliability of the results. The location of the sound source was found to be 36.050°N, 126.855°E at an altitude of 35 km, which was close to the location of the second fireball explosion. The two explosions were identified as sequential infrasound arrivals at local infrasound stations. Simulations of waveforms for long ranges explain the detection results at distant infrasound stations, up to ~266 km from the sound source. The dominant period of the signals recorded at five infrasound stations is about 0.4 s. A period-energy relation suggests the explosion energy was equivalent to ~0.3 ton of TNT.