DOI QR코드

DOI QR Code

클링커 염소 함량이 조강형 시멘트의 응결 및 압축강도에 미치는 영향

Effect of Chlorine Content in Clinker on Setting and Compressive Strength of Early Strength Cement

  • 최재원 (아세아시멘트 기술연구소) ;
  • 유병노 (아세아시멘트 기술연구소) ;
  • 서동균 (아세아시멘트 기술연구소) ;
  • 김경석 (아세아시멘트 기술연구소) ;
  • 한민철 (청주대학교 건축공학과)
  • 투고 : 2023.07.19
  • 심사 : 2023.08.03
  • 발행 : 2023.09.30

초록

본 연구에서는 염소 성분의 시멘트 수화반응 촉진 효과를 이용하여 염소 함량을 증가시킨 클링커의 조강형 시멘트로서의 활용 가능성을 평가하였다. 실제 시멘트 제조설비를 이용해 염소 성분 200-1,000 ppm 수준의 클링커를 제조하고, 여기에 석고 및 혼합재를 첨가하여 46개의 시멘트 시료를 제조하여 이의 표준주도 및 응결, 압축강도를 측정해 통계 분석하였다. 시험 결과, 염소 함량 증가에 따라 응결이 단축되고, 1일 압축강도가 향상되었지만, 28일 압축강도는 하락하였다. 특히 염소 함량을 230에서 965 ppm으로 증가시킬 경우 1일 압축강도가 4.6 MPa 향상되어 3,400-3,970 cm2/g 범위에서 Blaine을 증가시키는 것보다 향상 효과가 뛰어난 것으로 분석되었다.

In this study, we examine the feasibility of using chlorine in clinker as an early-strength cement by the effect of accelerating the cement hydration reaction of chlorine. Clinker with a chlorine content of 200-1,000 ppm was prepared using actual cement kilns, and 46 cement samples were prepared by adding gypsum and admixtures(GGBFs and limestone). We measured consistency, setting, 1-28 days compressive strength and analyzed them statistically. Test results indicated that an increase of the chlorine content resulted in shortening of initial and final setting time and the improvement of 1 day compressive strength. But the 28 days compressive strength was decreased. Specifically, when the chlorine content was increased from 230 to 965 ppm, the 1 day compressive strength increased up to 4.6 MPa, improvement effect was superior to that of increasing Blaine in the range of 3,400-3,970 cm2/g.

키워드

과제정보

이 연구는 2023년도 한국산업기술평가관리원의 연구비 지원에 의한 연구개발사업 결과의 일부임. 과제번호 : 20110616

참고문헌

  1. Chatziaras, N. Psomopoulos, C., Themelis, N. (2014). Use of alternative fuels in cement industry, Proceedings of the 12th International Conference on Protection and Restoration of the Environment, At: Skiathos island, Greece, 1, 521-529.
  2. Choi, J.W., Koo, K.M., Yoo, B.K., Cha, W.H., Kang, B.H. (2021). Study on the correlation between quality of cement and amount of alternative fuels used in clinker sintering process, Journal of the Korean Recycled Construction Resources Institute, 9(1), 75-84 [in Korean]. https://doi.org/10.14190/JRCR.2021.9.1.75
  3. Ghosh, S.N., Rao, P.B., Paul, A.K., Raina, K. (1979). The chemistry of dicalcium silicate mineral, Journal of Materials Science, 14, 1554-1566. https://doi.org/10.1007/BF00569274
  4. Groves, G.W. (1983). Phase transformations in dicalcium silicate, Journal of Materials Science, 18, 1615-1624. https://doi.org/10.1007/BF00542054
  5. Hewlett, P., Liska, M. (2019). Lea's Chemistry of Cement and Concrete, 5th Edition, Butterworth-Heinemann.
  6. Jeong, C.I., Park, S.K., Lee, E.H., Lee, K.H. (2007). Effects of mineral admixture on the paste fluidity and mortar strength development of high chloride cement, Journal of the Korean Ceramic Society, 44(1), 43.
  7. Kim, J.D. (2010). Effects on the environment and products of the use of combustible waste in cement kilns, Cement, 188, 10-19. [in Korean].
  8. Kim, Y.M. (2001), The Synthesis and Characteriazion of Alinite and the Influence of Heavy Metals, Zn and Fe, Rreplacements into Alinite Structure on the Phase Formation and Hydraulic Property, Master's Thesis, Seoul National University, Korea [in Korean].
  9. Lai, G.C., Nojiri, T., Nakano, K.I. (1992). Studies of the stability of β-Ca2SiO4 doped by minor ions. Cement and Concrete Research, 22(5), 743-754. https://doi.org/10.1016/0008-8846(92)90097-F
  10. Lawrence, C. (1990). The Mechanism of Corrosion of Reinforcement of Steel in Concrete, Crowthorne: British Cement Association.
  11. Ghosh, P.N. (1983). Advances in Cement Technology, Pergamon Press, 569.
  12. Park, S.O., Kang, Y.Y., Hwang, D.G., Kim, Y.J., Yoo, H.Y., Hong, S.Y., Jeon, T.W., Shin, S.K. (2017). Correlation analysis of co-processing waste materials and heavy metal contents in cement products, Journal of Korea Society of Waste Management, 34(5), 449-457 [in Korean]. https://doi.org/10.9786/kswm.2017.34.5.449
  13. Rapp, P. (1935). Effect of calcium chloride on portland cements and concretes, Part of Journal of Research of the National Bureau of Standards, 14, 499-517. https://doi.org/10.6028/jres.014.026
  14. Rosenberg, A.M. (1964). Study of the mechanism through which calcium chloride accelerates the set of Portland cement, Journal Proceedings, 61(10), 1261-1270. https://doi.org/10.14359/7826
  15. Schindler, A.K., Duke, S.R., Burch, T.E., Davis, E.W., Zee, R.H., Bransby, D.I., Hopkins, C., Thompson, R.L., Duan, J., Venkatasubramanian, V., Giles. S. (2012). Alternative Fuel for Portland Cement Processing, Final Research Report, United States Department of Energy.
  16. Shibata, S., Kishi, K., Asaga, K., Daimon, M., Shrestha, P.R. (1984). Preparation and hydration of β-C2S without stabilizer, Cement and Concrete Research, 14(3), 323-328. https://doi.org/10.1016/0008-8846(84)90049-8
  17. Tenoutasse, N. (1967). Investigation into the kinetics of the hydration of tricalcium aluminate in the presence of calcium sulfate and calcium chloride, Zement-Kalk-Gips, 20, 459-467.