DOI QR코드

DOI QR Code

Evaluation of Failure Mode in Concrete Beam Restrengthened with GFRP with Various Initial Conditions

GFRP로 보강된 다양한 초기 조건의 콘크리트보의 파괴 거동 평가

  • Jin-Won Nam (Department of Civil and Environmental Engineering, Inha Techincal College) ;
  • Seung-Jun Kwon (Department of Civil and Environmental Engineering, Hannam University)
  • 남진원 (인하공업전문대학 건설환경공학과) ;
  • 권성준 (한남대학교 토목환경공학과)
  • Received : 2023.06.13
  • Accepted : 2023.08.01
  • Published : 2023.09.30

Abstract

Various failure modes occur in the concrete beams reinforced with GFRP(Glass Fiber Reinforced Plastic) under initial condition and repairing patterns. In this study, the failure behaviors of concrete beams restrengthened with GFRP sheet with slightly higher elastic modulus than concrete were investigated. For the tests, concrete beams with 24 MPa were manufactured, and the effects of initial notch, overlapping, end-strip reinforcement, and fiber anchors were analyzed on failure load. The cases of GFRP overlap around notch and the initial notch showed increasing failure loads similar to those of normal restrengthened case since the epoxy of the saturated GFRP sufficiently repaired the notch area. Compared to the control case without restrengthening of GFRP, the concrete with initial notch showed 0.78 of loading ratio and normal restrengthening showed 4.43~5.61 times of increasing ratio of failure loading, where interface-debonding from flexural crack were mainly observed. The most ideal failure behavior, break of GFRP, was observed when end-strip over 1/3 height from bottom and fiber anchor were installed, which showed increasing failure load over 150 % to normal restrengthening.

유리섬유로 보강된 보강된 보의 경우 초기조건 및 보강형태에 따라 다양한 파괴모드가 발생한다. 본 연구에서는 콘크리트 탄성계수보다 약간 큰 유리섬유 보강재를 적용한 무근 콘크리트보의 파괴거동을 분석하였다. 실험을 위해 24 MPa 강도를 가지는 보를 제작하였으며, 초기 노치, 겹이음, 단부보강, 파이버 앵커 등의 영향을 분석하였다. 노치 및 노치부의 겹이음은 일반보강효과와 비슷한 하중증가를 나타내었는데, 이는 함침된 유리섬유의 에폭시가 노치 단면을 충분히 수복하기 때문이다. 보강하지 않은 기준기편에 비하여 초기 노치의 경우 0.78을, 보강한 경우는 4.43~5.61의 보강효과를 나타내었으며 휨파괴에서 시작되는 계면파괴가 지배적이었다. 높이의 1/3 이상의 단부 스트립과 파이버 앵커를 가진 경우 가장 이상적인 파괴거동(보강재 파단)을 나타내었는데, 일반 보강시편보다 150 % 이상의 파괴하중을 나타내었다.

Keywords

Acknowledgement

본 연구는 한남대학교 교내연구비(2022)에 의해 수행되었으므로 저자는 이에 감사드립니다.

References

  1. Ali, H., Assih, J., Li, A. (2021). Flexural capacity of continuous reinforced concrete beams strengthened or repaired by CFRP/GFRP sheets, International Journal of Adhesion and Adhesives, 104, 102759. 
  2. Ayash, N.M., Abd-Elrahman, A.M., Soliman, A.E. (2020). Repairing and strengthening of reinforced concrete cantilever slabs using Glass fiber-reinforced polymer (GFRP) wraps, Structures, 28, 2488-2506  https://doi.org/10.1016/j.istruc.2020.10.053
  3. Emmons, P.H. (1994). Concrete Repair and Maintenance Illustrated, R.S. Means Company, 5-16. 
  4. Gaul, R. (1996). Repair and Strengthening of Concrete Members with Adhesive Bonded Plates. American Concrete Institute, 41-49. 
  5. Hassan, T. Rizkalla, S. (2003). Investigation of bond in concrete structures strengthened with near surface mounted carbon fiber reinforced polymer strips, Journal of Composite for Construction, 7(3), 248-257.  https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(248)
  6. Hassan, T., Rizkalla, S. (2002). Bond mechanisms of near surface mounted FRP bars and strips for flexural strengthening of concrete structures, Proceeding of the First International Conference on Structural Health Monitoring of Innovative Civil Engineering Structures, Winnipeg, Manitoba, Canada, Sept, CD-ROM 
  7. Jung, W.T., Park, J.S., Park, Y.H. (2008). Prediction of failure modes for reinforced concrete beams strengthened with NSM CFRP reinforcement, KSCE Journal of Civil and Environmental Engineering Research, 28(3A), 349-356 [in Korean].  https://doi.org/10.12652/KSCE.2008.28.3A.349
  8. Khalifa, A.M. (2016). Flexural performance of RC beams strengthened with near surface mounted CFRP strips, Alexandria Engineering Journal, 55(2), 1497-1505.  https://doi.org/10.1016/j.aej.2016.01.033
  9. Malek, A., Saadatmanesh, H., Ehsani, M. (1998). Prediction of failure load of RC beams strengthened with FRP plate due to stress concentration at the plate end, ACI Structrual Journal, 95(2), 142-152.  https://doi.org/10.14359/534
  10. Moon, H.Y., Shin, D.G., Choi, D.S. (2007). Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system, Construction and Building Materials, 21(2), 362-369.  https://doi.org/10.1016/j.conbuildmat.2005.08.012
  11. Oh, K.S., Mun, J.M., Park, K.T., Kwon, S.J. (2016). Evaluation of load capacity reduction in RC beam with corroded FRP hybrid bar and steel, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(2), 10-17 [in Korean].  https://doi.org/10.11112/jksmi.2016.20.2.010
  12. Rahimi, H., Hutchinson, A. (2001). Concrete beams strengthened with externally bonded FRP plates, Journal of Composites for Construction, 5(1), 44-56.  https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(44)
  13. Seo, D.W., Park, K.T., You, Y.J., Kim, H.Y. (2013), Enhancement in elastic modulus of GFRP bars by material hybridization, Engineering, 5(11), 865-869.  https://doi.org/10.4236/eng.2013.511105