일체형 분광편광간섭모듈 기반 분광타원편광계의 정확도 향상

Accuracy Enhancement of Dynamic Spectroscopic Polarimetry

  • Gukhyeon Hwang (Department of Mechanical System Engineering, Jeonbuk National University) ;
  • Junbo Shim (Department of Mechanical System Engineering, Jeonbuk National University) ;
  • Inho Choi (Department of Mechanical System Engineering, Jeonbuk National University) ;
  • Sukhyun Choi (Department of Mechanical System Engineering, Jeonbuk National University) ;
  • Saeid Kheiryzadehkhanghah (Department of Mechanical System Engineering, Jeonbuk National University) ;
  • Daesuk Kim (Department of Mechanical System Engineering, Jeonbuk National University)
  • 투고 : 2023.08.24
  • 심사 : 2023.09.12
  • 발행 : 2023.09.30

초록

We describe an optimal alignment method for improving accuracy of dynamic spectroscopic polarimeter based on monolithic polarizing interferometer. The dynamic spectroscopic polarimeter enables real-time measurements of spectral ellipsometric parameters by using a spectral carrier frequency concept. However, the non-polarizing beam splitter used in the monolithic polarizing interferometer cannot maintain the polarization state perfectly due to phase retardation caused by optical anisotropic characteristics of the non-polarizing beam splitter, resulting in degraded measurement accuracy. The effect of the beam splitter can be minimized through optimal alignment of the polarizers used in the polarizing interferometer and the analyzer. We demonstrate how much the proposed alignment method can enhance the measurement accuracy by comparing with previous alignment approach.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2022R1I1A3071810).

참고문헌

  1. R. Attota, T. A. Germer, and R. M. Silver, "Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis," Opt. Lett. 33(17), 1990-1992 (2008). https://doi.org/10.1364/OL.33.001990
  2. X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, "Specular spectroscopic scatterometry," IEEE Trans. Semicond. Manuf. 14(2), 97-111 (2001). https://doi.org/10.1109/66.920722
  3. R.M.A. Azzam and N.M. Bashara, Ellipsometry, and Polarized Light Amsterdam (North-Holland, 1987).
  4. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
  5. D. Kim, M. Jin, W. Chegal, J. Lee, and R. Magnusson, "Calibration of a snapshot phase-resolved polarization-sensitive spectral reflectometer," Opt. Lett. 38(22), 4829-4832 (2013). https://doi.org/10.1364/OL.38.004829
  6. D. Kim, Y. Seo, Y. Yoon, V. Dembele, J. Yoon, K. Lee, and R. Magnusson, "Robust snapshot interferometric spectropolarimetry," Opt. Lett. 41(10), 2318-2321 (2016). https://doi.org/10.1364/OL.41.002318
  7. A. Nazarov, M. Ney, and I. Abdulhalim, "Parallel spectroscopic ellipsometry for ultra-fast thin film characterization," Opt. Express 28(7), 9288-9309 (2020). https://doi.org/10.1364/OE.28.009288
  8. P. Hlubina, D. Ciprian, and J. Lunacek, "Spectral interferometric technique to measure the ellipsometric phase of a thin-film structure," Opt. Lett. 34(17), 2661-2663 (2009). https://doi.org/10.1364/OL.34.002661
  9. K. Oka and T. Kato, "Spectroscopic polarimetry with channeled spectrum," Opt. Lett. 24(21), 1475-1477 (1999). https://doi.org/10.1364/OL.24.001475
  10. T. Wakayama, Y. Otani, and N. Umeda, "One-shot birefringence dispersion measurement based on channeled spectrum technique," Opt. Commun. 281(14), 3668-3672 (2008). https://doi.org/10.1016/j.optcom.2008.03.045
  11. D. Kim and V. Dembele, "One-piece polarizing interferometer for ultrafast spectroscopic polarimetry," Sci. Rep. 9(1), 5978 (2019).
  12. V. Dembele, S. Choi, W. Chegal, I. Choi, M. J. Paul, J. Kim, and D. Kim, "Dynamic spectroscopic ellipsometry based on a one-piece polarizing interferometric scheme," Opt. Commun. 454, 124426 (2020).
  13. I. Choi, V. Dembele, S. Kehiryzadehkhanghah, G. Hwang, B. Charron, J. F. Masson, and D. Kim, "Robustness enhancement of dynamic spectroscopic ellipsometry by compensating temperature dependency of the monolithic polarizing interferometer," Appl. Opt. 61(26), 7653-7661 (2022). https://doi.org/10.1364/AO.467481
  14. M. Gilo, "Design of a nonpolarizing beam splitter inside a glass cube," Appl. Opt. 31(25), 5345-5349 (1992) https://doi.org/10.1364/AO.31.005345
  15. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72(1), 156-160 (1982). https://doi.org/10.1364/JOSA.72.000156