과제정보
이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (2021-0-00177, 스마트 컨트랙트의 개발-배포-실행의 전주 기적 취약점 및 신뢰성 오류 개선 기술개발)
참고문헌
- Dong-Bin Choi, In-su Jo and Young B. Park. (2021) Comparison of Code Similarity Analysis Performance of funcGNN and Siamese Network, Journal of the Semiconductor & Display Technology, 20(3), 113-116.
- F. Zhong, Z. Chen, M. Xu, G. Zhang, D. Yu and X. Cheng, "Malware-on-the-Brain: Illuminating Malware Byte Codes With Images for Malware Classification," in IEEE Transactions on Computers, vol. 72, no. 2, pp. 438-451, 1 Feb. 2023, doi: 10.1109/TC.2022.3160357.
- Marastoni, Niccolo, Roberto Giacobazzi, and Mila Dalla Preda. "Data augmentation and transfer learning to classify malware images in a deep learning context." Journal of Computer Virology and Hacking Techniques 17 (2021): 279-297. https://doi.org/10.1007/s11416-021-00381-3
- Daoudi, Nadia, et al. "Dexray: a simple, yet effective deep learning approach to android malware detection based on image representation of bytecode." Deployable Machine Learning for Security Defense: Second International Workshop, MLHat 2021, Virtual Event, August 15, 2021, Proceedings 2. Springer International Publishing, 2021.
- Nataraj, Lakshmanan, et al. "Malware images: visualization and automatic classification." Proceedings of the 8th international symposium on visualization for cyber security. 2011.
- Pinhero, Anson, et al. "Malware detection employed by visualization and deep neural network." Computers & Security 105 (2021): 102247.
- "Verified Contracts", Etherscan, accessed Aug 07, 2023, https://etherscan.io/contractsVerified
- C. F. Torres, M. Steichen, and R. State, "The art of the SCAM: Demystifying honeypots in ethereum smart contracts," in Proc. 28 USENIX Security Symp., 2019, pp. 1591-1607.
- M. Bartoletti et al., "Dissecting ponzi schemes on ethereum: identification, analysis, and impact," arXiv preprint arXiv:1703.03779, 2017.
- Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556, 2014.
- He, Kaiming, et al. "Identity mappings in deep residual networks." Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.