OLED 증착용 정전척 개발을 위한 척킹력 분포와 변화 특성 연구

Investigation of Chucking Force Distribution and Variation Characteristics for the Development of ESC in OLED Deposition

  • 임충환 (한국기술교육대학교대학원 메카트로닉스공학과) ;
  • 민동균 (한국기술교육대학교 메카트로닉스공학부) ;
  • 김성빈 (한국기술교육대학교대학원 메카트로닉스공학과)
  • Choong Hwan Lim (Mechatronics Engineering, Graduate School of Korea University of Technology and Education) ;
  • Dong Kyun Min (School of Mechatronics Engineering, Korea University of Technology and Education) ;
  • Seong Bin Kim (Mechatronics Engineering, Graduate School of Korea University of Technology and Education)
  • 투고 : 2023.07.05
  • 심사 : 2023.09.11
  • 발행 : 2023.09.30

초록

The electrostatic chuck is a technology that uses electroadhesion to attach objects and is widely used in semiconductor and display processes. This research conducted Maxwell by varying parameters to examine the distribution and variations of chucking force in a bipolar-type ESC. The parameters that were changed include the material properties of the dielectric layer and attachment substrate, applied voltage to the electrode, and the gap and width between the electrodes. The analysis results showed that as the relative permittivity of the dielectric layer and substrate increased, the chucking force also increased, with the relative permittivity of the substrate having a greater impact on the chucking force. And increasing the applied voltage led to an increase in both the chucking force and its rate of change. Lastly, as the gap between the electrodes increased, the chucking force rapidly decreased until a certain distance, after which the decrease became less significant. On the contrary, increasing the electrode width resulted in a rapid increase in the chucking force until a certain width, beyond which the increase became less pronounced, eventually converging to a chucking force of 1700 Pa. This paper is expected to have high potential for the development and research of ESC for OLED deposition.

키워드

과제정보

이 논문은 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 진행된 연구입니다(P0008458, 산업혁신인재성장지원사업).

참고문헌

  1. M. Eritt, C. May, K. Leo, M. Toerker, and C. Radehaus, "OLED manufacturing for large area lighting applications", Thin solid films, Vol. 518, no.11, pp. 3042- 3045, 2010.  https://doi.org/10.1016/j.tsf.2009.09.188
  2. D.H. Kim, and K. S. Kim, "Study on Coolant Passage for Improving Temperature Uniformity of the Electrostatic Chuck Surface", Journal of the semiconductor & display technology, Vol. 15, no. 3, pp. 72-77, 2016. 
  3. A. Johnsen and K. Rahbek, "A physical phenomenon and its applications to telegraphy, telephony, etc", Journal of the Institution of Electrical Engineers, Vol. 61, no. 320, pp. 713-725, 1923.  https://doi.org/10.1049/jiee-1.1923.0092
  4. J. Guo, J. Leng and J. Rossiter, "Electroadhesion technologies for robotics: A comprehensive review", IEEE Transactions on Robotics, Vol. 36, no. 2, pp. 313-327, 2019.  https://doi.org/10.1109/TRO.2019.2956869
  5. J. Guo, T. Bamber, M. Chamberlain, L. Justham, and M. Jackson, "Optimization and experimental verification of coplanar interdigital electroadhesives", Journal of Physics D: Applied Physics, Vol. 49, no. 41, 2016. 
  6. H. Prahlad, R. Pelrine, S. Stanford, J. Marlow, and R. Kornbluh, "Electroadhesive robots-wall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology", IEEE international conference on robotics and automation, pp. 3028-3033, 2008. 
  7. K. Choi, J. Y. Chung, I. K. Park, N. Y. Kim, J. Suhr, and J. D. Nam, "Capturing Polar and Nonpolar Particles with an Electroadhesive Device Using Interfacial and Orientational Polarization", ACS Sustainable Chemistry & Engineering, Vol. 9, no. 39, pp. 13367-13375, 2021.  https://doi.org/10.1021/acssuschemeng.1c04887
  8. M. Ritter, and D. Barnhart, "Geometry characterization of electroadhesion samples for spacecraft docking application", IEEE Aerospace Conference, pp. 1-8, 2017. 
  9. B. C. Leung, N. R. Goeser, L. A. Miller, and S. Gonzalez, "Validation of electroadhesion as a docking method for spacecraft and satellite servicing", IEEE Aerospace Conference, pp. 1-8, 2015. 
  10. K. Yatsuzuka, J. I. Toukairin, K. Asano, and S. Aonuma, "Electrostatic chuck with a thin ceramic insulation layer for wafer holding", In Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No. 01CH37248), Vol. 1, pp. 399-40, 2001. 
  11. C. H. Li, Y. F. Chiu, Y. H. Yu, and J. Z. Chen, "Simulation studies on bipolar electrostatic chucks", In 2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), pp. 382-385, 2015. 
  12. J. Y. Lee, K. M. Jang, D. K. Min, J. G. Kang, G. H. Sung, and H. D. Kim, "A Study on Attractive Force Characteristics of Glass Substrate Using Alumina Electrostatic Chuck by Finite Element Analysis", Journal of the Semiconductor & Display Technology, Vol. 19, no. 4, pp. 45-50, 2020. 
  13. J. Yoo, J. S. Choi, S. J. Hong, T. H. Kim, and S. J. Lee, "Finite element analysis of the attractive force on a Coulomb type electrostatic chuck", International Conference on Electrical Machines and Systems (ICEMS), pp. 1371-1375, 2007. 
  14. H.S. Choi, I.H. Park, and W.K. Moon, "On the physical meaning of maxwell stress tensor", The Transactions of The Korean Institute of Electrical Engineers, Vol. 58, no. 4, pp. 725-734, 2009.