DOI QR코드

DOI QR Code

Adenine Induces Apoptosis Markers in B16-F10 Melanoma Cells: Inhibiting Akt and mTOR and Increasing Bax/Bcl-2 Ratio

  • Seung-Kiel Park (Department of Biochemistry, College of Medicine, Chungnam National University)
  • Received : 2023.07.21
  • Accepted : 2023.08.08
  • Published : 2023.09.30

Abstract

Free adenine is mainly made during the polyamine synthesis in proliferating cells. Adenine molecule itself acts biological modulator in inflammation and cell death. In the previous report, we showed that adenine induces apoptotic cell death of B16-F10 mouse melanoma cells by eliciting of PARP and caspase 3 cleavages. In this study, we examined the adenine effect on other apoptotic molecules affecting caspase activation in B16-F10 melanoma cells. Adenine treatment make pro-apoptotic molecules active states. Bax/Bcl-2 ratio was increased and phosphorylation of mTOR and Akt was decreased in a dose dependent manner. These results showed the possibility that Bax/Bcl-2, Akt and mTOR are engaged in adenine induced apoptosis of melanoma cells.

Keywords

Acknowledgement

This work was financially supported by research funds of Chungnam National University.

References

  1. Avila MA, Garcia-Trevijano ER, Lu SC, Corrales FJ, Mato JM. Methylthioadenosine. Int J Biochem Cell Biol. 2004. 36: 2125-2130. https://doi.org/10.1016/j.biocel.2003.11.016
  2. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002. 2: 647-656. https://doi.org/10.1038/nrc883
  3. Dai DL, Martinka M, Li G. Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol. 2005. 23: 1473-1482. https://doi.org/10.1200/JCO.2005.07.168
  4. Debatin KM. Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother. 2004. 53: 153-159. https://doi.org/10.1007/s00262-003-0474-8
  5. Deng W, Gopal YN, Scott A, Chen G, Woodman SE, Davies MA. Role and therapeutic potential of PI3K-mTOR signaling in de novo resistance to BRAF inhibition. Pigment Cell Melanoma Res. 2012. 25: 248-258. https://doi.org/10.1111/j.1755-148X.2011.00950.x
  6. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007. 35: 495-516. https://doi.org/10.1080/01926230701320337
  7. Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell. 1997. 88: 435-437. https://doi.org/10.1016/S0092-8674(00)81883-8
  8. He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021. 6: 425.
  9. Hershfield MS, Snyder FF, Seegmiller JE. Adenine and adenosine are toxic to human lymphoblast mutants defective in purine salvage enzymes. Science. 1977. 197: 1284-1287. https://doi.org/10.1126/science.197600
  10. Kamatani N, Carson DA. Dependence of adenine production upon polyamine synthesis in cultured human lymphoblasts. Biochim Biophys Acta. 1981. 675: 344-350. https://doi.org/10.1016/0304-4165(81)90024-6
  11. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972. 26: 239-257. https://doi.org/10.1038/bjc.1972.33
  12. Leiter U, Schmid RM, Kaskel P, Peter RU, Krahn G. Antiapoptotic bcl-2 and bcl-xL in advanced malignant melanoma. Arch Dermatol Res. 2000. 292: 225-232. https://doi.org/10.1007/s004030050479
  13. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000. 21: 485-495 https://doi.org/10.1093/carcin/21.3.485
  14. Madhunapantula SV, Mosca PJ, Robertson GP. The Akt signaling pathway: an emerging therapeutic target in malignant melanoma. Cancer Biol Ther. 2011. 12: 1032-1049. https://doi.org/10.4161/cbt.12.12.18442
  15. Marone R, Erhart D, Mertz AC, Bohnacker T, Schnell C, Cmiljanovic V, Stauffer F, Garcia-Echeverria C, Giese B, Maira SM, Wymann MP. Targeting melanoma with dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors. Mol Cancer Res. 2009. 7: 601-613. https://doi.org/10.1158/1541-7786.MCR-08-0366
  16. Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem. 2011. 351: 41-58. https://doi.org/10.1007/s11010-010-0709-x
  17. Paluncic J, Kovacevic Z, Jansson PJ, Kalinowski D, Merlot AM, Huang ML, Lok HC, Sahni S, Lane DJ, Richardson DR. Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. Biochim Biophys Acta. 2016. 1863: 770-784. https://doi.org/10.1016/j.bbamcr.2016.01.025
  18. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006. 441: 424-430. https://doi.org/10.1038/nature04869
  19. Silwal P, Shin K, Choi S, Kang SW, Park JB, Lee HJ, Koo SJ, Chung KH, Namgung U, Lim K, Heo JY, Park JI, Park SK. Adenine suppresses IgE-mediated mast cell activation. Mol Immunol. 2015. 65: 242-249. https://doi.org/10.1016/j.molimm.2015.01.021
  20. Silwal P, Park SK. Adenine Inhibits B16-F10 Melanoma Cell Proliferation. Biomedical Science Letters. 2020. 26: 179-185. https://doi.org/10.15616/BSL.2020.26.3.179
  21. Simon ER, Chapman RG, Finch CA. Adenine in red cell preservation. J Clin Invest. 1962. 41: 351-359. https://doi.org/10.1172/JCI104489
  22. Slipicevic A, Holm R, Nguyen MT, Bohler PJ, Davidson B, Florenes VA. Expression of activated Akt and PTEN in malignant melanomas: relationship with clinical outcome. Am J Clin Pathol. 2005. 124: 528-536. https://doi.org/10.1309/YT58WWMTA6YR1PRV
  23. Snyder FF, Hershfield MS, Seegmiller JE. Cytotoxic and metabolic effects of adenosine and adenine on human lymphoblasts. Cancer Res. 1978. 38: 2357-2362.
  24. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015. 15: 7-24. https://doi.org/10.1038/nrc3860
  25. Watanabe S, Yoshimi Y, Ikekita M. Neuroprotective effect of adenine on purkinje cell survival in rat cerebellar primary cultures. J Neurosci Res. 2003. 74: 754-759. https://doi.org/10.1002/jnr.10790