DOI QR코드

DOI QR Code

Trans-anethole Suppresses C2C12 Myoblast Differentiation

  • Mi-Ran Lee (Department of Biomedical Laboratory Science, Jungwon University)
  • Received : 2023.08.16
  • Accepted : 2023.09.04
  • Published : 2023.09.30

Abstract

Skeletal muscle, essential for metabolism, thermoregulation, and immunity, undergoes myogenic differentiation that results in myotube formation. Trans-anethole (TA), the major constituent in essential oil produced by anise, star anise, and fennel, whose function in skeletal muscle has not yet been elucidated. Therefore, we investigated whether TA influenced muscle differentiation in mouse C2C12 myoblasts. Cells were induced to differentiate using a differentiation medium with or without TA (50 or 200 mg/mL) daily for 5 days. We measured myotube length and diameter after differentiation days 1, 3, and 5 and analyzed the expression of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) using quantitative real-time PCR. Additionally, we observed the expression of total protein kinase B (Akt) and phosphorylated Akt (p-Akt) using western blotting. Our data showed that TA significantly induced the formation of smaller and thinner myotubes and reduced the myogenic factor expression. Furthermore, the atrogin-1 and MuRF-1 expression markedly increased by TA. Consistent with these findings, TA significantly decreased the expression of total Akt and p-Akt. Taken together, these results indicate that TA inhibits myogenic differentiation of C2C12 cells via reduction of both total Akt and p-Akt. Our findings may provide valuable insights into the impact of PAA on individuals at risk of muscle atrophy.

Keywords

Acknowledgement

This work was supported by the Jungwon University Research Grant (2021-033).

References

  1. Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan SA, Anwar F. Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine. 2015. 5: 601-611. https://doi.org/10.1016/j.apjtb.2015.05.007
  2. Aprotosoaie AC, Costache II, Miron A. Anethole and its role in chronic diseases. Adv Exp Med Biol. 2016. 929: 247-267.  https://doi.org/10.1007/978-3-319-41342-6_11
  3. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001. 294: 1704-1708. https://doi.org/10.1126/science.1065874
  4. Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev. 2006. 16: 525-532. https://doi.org/10.1016/j.gde.2006.08.008
  5. Burcin Kubat G, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion. 2023. 10.1016/j.mito.2023.07.003.
  6. Comai G, Tajbakhsh S. Molecular and cellular regulation of skeletal myogenesis. Curr Top Dev Biol. 2014. 110: 1-73. https://doi.org/10.1016/B978-0-12-405943-6.00001-4
  7. Dagli N, Dagli R, Mahmoud RS, Baroudi K. Essential oils, their therapeutic properties, and implication in dentistry: A review. J Int Soc Prev Community Dent. 2015. 5: 335-340. https://doi.org/10.4103/2231-0762.165933
  8. Damayanti A, Setyawan E. Essential oil extraction of fennel seed (foeniculum vulgare) using steam distillation. International Journal of Science and Engineering. 2012. 3: 12-14. https://doi.org/10.12777/ijse.3.2.12-14
  9. Dias P, Dilling M, Houghton P. The molecular basis of skeletal muscle differentiation. Semin Diagn Pathol. 1994. 11: 3-14.
  10. Dodou E, Xu SM, Black BL. Mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mech Dev. 2003. 120: 1021-1032. https://doi.org/10.1016/S0925-4773(03)00178-3
  11. Ebrahimi H, Mardani A, Basirinezhad MH, Hamidzadeh A, Eskandari F. The effects of lavender and chamomile essential oil inhalation aromatherapy on depression, anxiety and stress in older community-dwelling people: A randomized controlled trial. Explore (NY). 2022. 18: 272-278. https://doi.org/10.1016/j.explore.2020.12.012
  12. Espejo F, Vazquez C, Patino B, Armada S. Ochratoxin a production in aniseed-based media by selected fungal strains and in anise fruits (pimpinella anisum l.). Mycotoxin Res. 2010. 26: 75-84. https://doi.org/10.1007/s12550-010-0042-y
  13. Ferri P, Barbieri E, Burattini S, Guescini M, D'Emilio A, Biagiotti L, Del Grande P, De Luca A, Stocchi V, Falcieri E. Expression and subcellular localization of myogenic regulatory factors during the differentiation of skeletal muscle c2c12 myoblasts. J Cell Biochem. 2009. 108: 1302-1317. https://doi.org/10.1002/jcb.22360
  14. Gulcin I, Oktay M, Kirecci E, Kufrevioglu OI. Screening of antioxidant and antimicrobial activities of anise (pimpinella anisum l.) seed extracts. Food Chemistry. 2003. 83: 371-382. https://doi.org/10.1016/S0308-8146(03)00098-0
  15. Huang Y, Zhao J, Zhou L, Wang J, Gong Y, Chen X, Guo Z, Wang Q, Jiang W. Antifungal activity of the essential oil of illicium verum fruit and its main component trans-anethole. Molecules. 2010. 15: 7558-7569. https://doi.org/10.3390/molecules15117558
  16. Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase akt/protein kinase b. Proc Natl Acad Sci U S A. 1999. 96: 2077-2081. https://doi.org/10.1073/pnas.96.5.2077
  17. Kim KY, Lee HS, Seol GH. Anti-inflammatory effects of trans-anethole in a mouse model of chronic obstructive pulmonary disease. Biomed Pharmacother. 2017. 91: 925-930. https://doi.org/10.1016/j.biopha.2017.05.032
  18. Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion. 2023. 72: 33-58. https://doi.org/10.1016/j.mito.2023.07.003
  19. Kwiatkowski P, Grygorcewicz B, Pruss A, Wojciuk B, Dolegowska B, Giedrys-Kalemba S, Sienkiewicz M, Wojciechowska-Koszko I. The effect of subinhibitory concentrations of trans-anethole on antibacterial and antibiofilm activity of mupirocin against mupirocin-resistant staphylococcus aureus strains. Microb Drug Resist. 2019. 25: 1424-1429. https://doi.org/10.1089/mdr.2019.0101
  20. Kwiatkowski P, Wojciuk B, Wojciechowska-Koszko I, Lopusiewicz L, Grygorcewicz B, Pruss A, Sienkiewicz M, Fijalkowski K, Kowalczyk E, Dolegowska B. Innate immune response against staphylococcus aureus preincubated with subinhibitory concentration of trans-anethole. Int J Mol Sci. 2020. 21.
  21. Leger B, Vergani L, Soraru G, Hespel P, Derave W, Gobelet C, D'Ascenzio C, Angelini C, Russell AP. Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in akt and an increase in atrogin-1. FASEB J. 2006. 20: 583-585. https://doi.org/10.1096/fj.05-5249fje
  22. Liu N, Nelson BR, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN. Requirement of mef2a, c, and d for skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2014. 111: 4109-4114. https://doi.org/10.1073/pnas.1401732111
  23. Londhe P, Davie JK. Sequential association of myogenic regulatory factors and e proteins at muscle-specific genes. Skelet Muscle. 2011. 1: 14.
  24. Merz KE, Thurmond DC. Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol. 2020. 10: 785-809. https://doi.org/10.1002/cphy.c190029
  25. Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes Metab Syndr Obes. 2019. 12: 1057-1072. https://doi.org/10.2147/DMSO.S186600
  26. Moradi J, Abbasipour F, Zaringhalam J, Maleki B, Ziaee N, Khodadoustan A, Janahmadi M. Anethole, a medicinal plant compound, decreases the production of pro-inflammatory tnfalpha and il-1beta in a rat model of lps-induced periodontitis. Iran J Pharm Res. 2014. 13: 1319-1325.
  27. Mouhoub A, Guendouz A, Belkamel A, El Alaoui Talibi Z, Ibnsouda Koraichi S, El Modafar C, Delattre C. Assessment of the antioxidant, antimicrobial and anti-biofilm activities of essential oils for potential application of active chitosan films in food preservation. World J Microbiol Biotechnol. 2022. 38: 179.
  28. Nelke C, Dziewas R, Minnerup J, Meuth SG, Ruck T. Skeletal muscle as potential central link between sarcopenia and immune senescence. EBioMedicine. 2019. 49: 381-388. https://doi.org/10.1016/j.ebiom.2019.10.034
  29. Nguyen NU, Wang HV. Dual roles of palladin protein in in vitro myogenesis: Inhibition of early induction but promotion of myotube maturation. PLoS One. 2015. 10: e0124762.
  30. Orav A, Raal A, Arak E. Essential oil composition of pimpinella anisum l. Fruits from various european countries. Nat Prod Res. 2008. 22: 227-232. https://doi.org/10.1080/14786410701424667
  31. Ponte EL, Sousa PL, Rocha MV, Soares PM, Coelho-de-Souza AN, Leal-Cardoso JH, Assreuy AM. Comparative study of the antiedematogenic effects of anethole and estragole. Pharmacol Rep. 2012. 64: 984-990. https://doi.org/10.1016/S1734-1140(12)70895-2
  32. Ramsey JT, Shropshire BC, Nagy TR, Chambers KD, Li Y, Korach KS. Essential oils and health. Yale J Biol Med. 2020. 93: 291-305.
  33. Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R. Myod or myf-5 is required for the formation of skeletal muscle. Cell. 1993. 75: 1351-1359. https://doi.org/10.1016/0092-8674(93)90621-V
  34. Ryu J, Seo J, Lee Y, Lim Y, Ahn JH, Hur HG. Identification of syn- and anti-anethole-2,3-epoxides in the metabolism of trans-anethole by the newly isolated bacterium pseudomonas putida jyr-1. J Agric Food Chem. 2005. 53: 5954-5958. https://doi.org/10.1021/jf040445x
  35. Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clin Genet. 2000. 57: 16-25. https://doi.org/10.1034/j.1399-0004.2000.570103.x
  36. Santos ACD, Nogueira ML, Oliveira FP, Costa EV, Bezerra DP. Essential oils of duguetia species a. St. Hill (annonaceae): Chemical diversity and pharmacological potential. Biomolecules. 2022. 12.
  37. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013. 280: 4294-4314. https://doi.org/10.1111/febs.12253
  38. Shahat AA, Ibrahim AY, Hendawy SF, Omer EA, Hammouda FM, Abdel-Rahman FH, Saleh MA. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules. 2011. 16: 1366-1377. https://doi.org/10.3390/molecules16021366
  39. Shimoni E, Baasov T, Ravid U, Shoham Y. The trans-anethole degradation pathway in an arthrobacter sp. J Biol Chem. 2002. 277: 11866-11872. https://doi.org/10.1074/jbc.M109593200
  40. Shojaii A, Abdollahi Fard M. Review of pharmacological properties and chemical constituents of pimpinella anisum. ISRN Pharm. 2012. 2012: 510795.
  41. Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr. 2020. 12: 14.
  42. Silveira LR, Pinheiro CH, Zoppi CC, Hirabara SM, Vitzel KF, Bassit RA, Barbosa MR, Sampaio IH, Melo IH, Fiamoncini J, Carneiro EM, Curi R. [regulation of glucose and fatty acid metabolism in skeletal muscle during contraction]. Arq Bras Endocrinol Metabol. 2011. 55: 303-313. https://doi.org/10.1590/S0004-27302011000500002
  43. Wang J, Fry CME, Walker CL. Carboxyl-terminal modulator protein regulates akt signaling during skeletal muscle atrophy in vitro and a mouse model of amyotrophic lateral sclerosis. Sci Rep. 2019. 9: 3920.
  44. Wang W, Li M, Chen Z, Xu L, Chang M, Wang K, Deng C, Gu Y, Zhou S, Shen Y, Tao F, Sun H. Biogenesis and function of extracellular vesicles in pathophysiological processes of skeletal muscle atrophy. Biochem Pharmacol. 2022. 198: 114954.
  45. Xu Q, Wu Z. The insulin-like growth factor-phosphatidylinositol 3-kinase-akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived rd cells. J Biol Chem. 2000. 275: 36750-36757. https://doi.org/10.1074/jbc.M005030200
  46. Yea SS, Jeong HS, Choi CY, Park KR, Oh S, Shin JG, Yun CH. Inhibitory effect of anethole on t-lymphocyte proliferation and interleukin-2 production through down-regulation of the nf-at and ap-1. Toxicol In vitro. 2006. 20: 1098-1105. https://doi.org/10.1016/j.tiv.2006.01.020
  47. Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol Res. 2021. 172: 105807.
  48. Zachariah T, Leela N. Volatiles from herbs and spices. 2006. 3. 177-218. Elservier. Handbook of herbs and spices.
  49. Zhang S, Chen X, Devshilt I, Yun Q, Huang C, An L, Dorjbat S, He X. Fennel main constituent, trans-anethole treatment against lps-induced acute lung injury by regulation of th17/treg function. Mol Med Rep. 2018. 18: 1369-1376. https://doi.org/10.3892/mmr.2018.9149