DOI QR코드

DOI QR Code

Molecular Mechanisms of Inner Ear Development and Disease

  • Hayoung Yang (Department of Biochemistry, Chungbuk National University) ;
  • Jiho Ryu (Department of Biochemistry, Chungbuk National University) ;
  • Sungbo Shim (Department of Biochemistry, Chungbuk National University)
  • Received : 2023.08.25
  • Accepted : 2023.09.01
  • Published : 2023.09.30

Abstract

The inner ear constitutes a complex organ responsible for auditory perception and equilibrium. It comprises diverse cellular entities operating collaboratively to perceive and transmit sensory information to the brain. Inner ear disease is a sophisticated and multifactorial scenario substantially impacting the quality of life of affected individuals. Gaining insights into the developmental process of the inner ear is crucial for diagnosing and treating inner ear diseases, which can lead to hearing loss and impaired balance. Recent research in inner ear development and associated pathophysiology has focused on several pivotal domains, including identifying new genes and signaling pathways involved in inner ear development, using stem cells for inner ear regeneration, and developing novel therapies for inner ear diseases. Recent advances in genetics research have shed new light on the fundamental etiologies of inner ear diseases, with a growing body of evidence suggesting that genetic mutations might exert a pivotal influence on the development and progression of this condition. In this review, we have delved into certain common genetic mutations linked to inner ear disorders. We also discussed ongoing research endeavors and future directions for understanding the genetic mechanisms underlying this condition and potential therapeutic avenues.

Keywords

Acknowledgement

This research was supported by Chungbuk National University Korea National University Development Project(2022).

References

  1. Akol I, Izzo A, Gather F, Strack S, Heidrich S, OhAilin D, Villarreal A, Hacker C, Rauleac T, Bella C, Fischer A, Manke T, Vogel T. Multimodal epigenetic changes and altered NEUROD1 chromatin binding in the mouse hippocampus underlie FOXG1 syndrome. Proc Natl Acad Sci U S A. 2023. 120: e2122467120.
  2. Alvarado DM, Veile R, Speck J, Warchol M, Lovett M. Downstream targets of GATA3 in the vestibular sensory organs of the inner ear. Dev Dyn. 2009. 238: 3093-3102. https://doi.org/10.1002/dvdy.22149
  3. Andrew K. Groves, Donna MF. Shaping sound in space: the regulation of inner ear patterning. Development. 2012. 139: 826.
  4. Asai Y, Pan B, Nist-Lund C, Galvin A, Lukashkin AN, Lukashkina VA, Chen T, Zhou W, Zhu H, Russell IJ, Holt JR, Geleoc GSG. Transgenic Tmc2 expression preserves inner ear hair cells and vestibular function in mice lacking Tmc1. Sci Rep. 2018. 8: 12124.
  5. Baker K, Brough DE, Staecker H. Repair of the vestibular system via adenovector delivery of Atoh1: a potential treatment for balance disorders. Adv Otorhinolaryngol. 2009. 66: 52-63. https://doi.org/10.1159/000218207
  6. Balendran V, Ritter KE, Martin DM. Epigenetic mechanisms of inner ear development. Hear Res. 2022. 426: 108440.
  7. Basch ML, Brown RM, Jen HI, Groves AK. Where hearing starts: the development of the mammalian cochlea. J Anat. 2016. 228: 233-254. https://doi.org/10.1111/joa.12314
  8. Burton Q, Cole LK, Mulheisen M, Chang W, Wu DK. The role of Pax2 in mouse inner ear development. Dev Biol. 2004. 272: 161-175. https://doi.org/10.1016/j.ydbio.2004.04.024
  9. Castiglione A, Moller C. Usher Syndrome. Audiol Res. 2022. 12: 42-65. https://doi.org/10.3390/audiolres12010005
  10. Christophorou NA, Mende M, Lleras-Forero L, Grocott T, Streit A. Pax2 coordinates epithelial morphogenesis and cell fate in the inner ear. Dev Biol. 2010. 345: 180-190. https://doi.org/10.1016/j.ydbio.2010.07.007
  11. Dai Q, Long L, Zhao H, Wang R, Zheng H, Duan M. Genetic advances in Meniere Disease. Mol Biol Rep. 2023. 50: 2901-2908. https://doi.org/10.1007/s11033-022-08149-8
  12. Delmaghani S, El-Amraoui A. The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet. 2022. 141: 709-735. https://doi.org/10.1007/s00439-022-02448-7
  13. Ding Y, Meng W, Kong W, He Z, Chai R. The Role of FoxG1 in the Inner Ear. Front Cell Dev Biol. 2020. 8: 614954.
  14. Driver EC, Kelley MW. Development of the cochlea. Development. 2020. 147: dev162263.
  15. Duncan JS, Fritzsch B. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One. 2013. 8: e62046.
  16. Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B. Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Fac Rev. 2021. 10: 47.
  17. Gilels FA, Wang J, Bullen A, White PM, Kiernan AE. Deletion of the Notch ligand Jagged1 during cochlear maturation leads to inner hair cell defects and hearing loss. Cell Death Dis. 2022. 13: 971.
  18. Griffith AJ, Wangemann P. Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear Res. 2011. 281: 11-17. https://doi.org/10.1016/j.heares.2011.05.009
  19. Hartman BH, Reh TA, Bermingham-McDonogh O. Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proc Natl Acad Sci U S A. 2010. 107: 15792-15797. https://doi.org/10.1073/pnas.1002827107
  20. Joo HA, Lee DK, Lee YJ, Alrehaili BM, AlMutawah AA, Kang WS, Ahn JH, Chung JW, Park HJ. Anatomical Features of Children With Mondini Dysplasia: Influence on Cochlear Implantation Performance. Otol Neurotol. 2023. 44: e379-e386.
  21. Kouzaki H, Suzuki M, Shimizu T. Immunohistochemical and ultrastructural abnormalities in muscle from a patient with sensorineural hearing loss related to a 1555 A-to-G mitochondrial mutation. J Clin Neurosci. 2007. 14: 603-607. https://doi.org/10.1016/j.jocn.2005.10.012
  22. Kraushar ML, Thompson K, Wijeratne HR, Viljetic B, Sakers K, Marson JW, Kontoyiannis DL, Buyske S, Hart RP, Rasin MR. Temporally defined neocortical translation and polysome assembly are determined by the RNA-binding protein Hu antigen R. Proc Natl Acad Sci U S A. 2014. 111: E3815-E3824. https://doi.org/10.1073/pnas.1408305111
  23. Kumamoto T, Hanashima C. Evolutionary conservation and conversion of Foxg1 function in brain development. Dev Growth Differ. 2017. 59: 258-269. https://doi.org/10.1111/dgd.12367
  24. Luo XJ, Deng M, Xie X, Huang L, Wang H, Jiang L, Liang G, Hu F, Tieu R, Chen R, Gan L. GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea. Hum Mol Genet. 2013. 22: 3609-3623. https://doi.org/10.1093/hmg/ddt212
  25. Mammano F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb Perspect Med. 2019. 9: a033233.
  26. Masindova I, Varga L, Stanik J, Valentinova L, Profant M, Klimes I, Gasperikova D. Molecular and hereditary mechanisms of sensorineural hearing loss with focus on selected endocrinopathies. Endocr Regul. 2012. 46: 167-186. https://doi.org/10.4149/endo_2012_03_167
  27. Moriguchi T, Hoshino T, Rao A, Yu L, Takai J, Uemura S, Ise K, Nakamura Y, Lim KC, Shimizu R, Yamamoto M, Engel JD. A Gata3 3' Distal Otic Vesicle Enhancer Directs Inner EarSpecific Gata3 Expression. Mol Cell Biol. 2018. 38: e00302-e00318. https://doi.org/10.1128/MCB.00302-18
  28. Murata J, Ikeda K, Okano H. Notch signaling and the developing inner ear. Adv Exp Med Biol. 2012. 727: 161-173. https://doi.org/10.1007/978-1-4614-0899-4_12
  29. Muthamilselvan S, Raghavendran A, Palaniappan A. Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression. PLoS One. 2022. 17: e0249151.
  30. Pan W, Jin Y, Chen J, Rottier RJ, Steel KP, Kiernan AE. Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J Neurosci. 2013. 33: 16146-16157. https://doi.org/10.1523/JNEUROSCI.3150-12.2013
  31. Park BY, Saint-Jeannet JP. Long-term consequences of Sox9 depletion on inner ear development. Dev Dyn. 2010. 239: 1102-1112. https://doi.org/10.1002/dvdy.22259
  32. Rinkwitz S, Bober E, Baker R. Development of the vertebrate inner ear. Ann N Y Acad Sci. 2001. 942: 1-14. https://doi.org/10.1111/j.1749-6632.2001.tb03730.x
  33. Roberts DM, Bush ML, Jones RO. Adult progressive sensorineural hearing loss: is preoperative imaging necessary before cochlear implantation? Otol Neurotol. 2014. 35: 241-245. https://doi.org/10.1097/MAO.0b013e3182a437b3
  34. Sai X, Ladher RK. Early steps in inner ear development: induction and morphogenesis of the otic placode. Front. Pharmacol. 2015. 6: 19.
  35. Schrauwen I, Liaqat K, Schatteman I, Bharadwaj T, Nasir A, Acharya A, Ahmad W, Van Camp G, Leal SM. Autosomal Dominantly Inherited GREB1L Variants in Individuals with Profound Sensorineural Hearing Impairment. Genes (Basel). 2020. 11: 687.
  36. Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci. 2011. 31: 3407-3422. https://doi.org/10.1523/JNEUROSCI.5085-10.2011
  37. Smith ET, Pacentine I, Shipman A, Hill M, Nicolson T. Disruption of tmc1/2a/2b Genes in Zebrafish Reveals Subunit Requirements in Subtypes of Inner Ear Hair Cells. J Neurosci. 2020. 40: 4457-4468. https://doi.org/10.1523/JNEUROSCI.0163-20.2020
  38. Steevens AR, Sookiasian DL, Glatzer JC, Kiernan AE. SOX2 is required for inner ear neurogenesis. Sci Rep. 2017. 7: 4086.
  39. Szeto IYY, Chu DKH, Chen P, Chu KC, Au TYK, Leung KKH, Huang YH, Wynn SL, Mak ACY, Chan YS, Chan WY, Jauch R, Fritzsch B, Sham MH, Lovell-Badge R, Cheah KSE. SOX9 and SOX10 control fluid homeostasis in the inner ear for hearing through independent and cooperative mechanisms. Proc Natl Acad Sci U S A. 2022. 119: e2122121119.
  40. Tambalo M, Anwar M, Ahmed M, Streit A. Enhancer activation by FGF signalling during otic induction. Dev Biol. 2020. 457: 69-82. https://doi.org/10.1016/j.ydbio.2019.09.006
  41. Tan AL, Mohanty S, Guo J, Lekven AC, Riley BB. Pax2a, Sp5a and Sp5l act downstream of Fgf and Wnt to coordinate sensory-neural patterning in the inner ear. Dev Biol. 2022. 492: 139-153. https://doi.org/10.1016/j.ydbio.2022.10.004
  42. Toms M, Pagarkar W, Moosajee M. Usher syndrome: clinical features, molecular genetics and advancing therapeutics. Ther Adv Ophthalmol. 2020. 12: 2515841420952194.
  43. Wakaoka T, Motohashi T, Hayashi H, Kuze B, Aoki M, Mizuta K, Kunisada T, Ito Y. Tracing Sox10-expressing cells elucidates the dynamic development of the mouse inner ear. Hear Res. 2013. 302: 17-25. https://doi.org/10.1016/j.heares.2013.05.003
  44. Wen J, Song J, Bai Y, Liu Y, Cai X, Mei L, Ma L, He C, Feng Y. A Model of Waardenburg Syndrome Using Patient-Derived iPSCs With a SOX10 Mutation Displays Compromised Maturation and Function of the Neural Crest That Involves Inner Ear Development. Front Cell Dev Biol. 2021. 9: 720858.
  45. Wright TJ, Mansour SL. FGF signaling in ear development and innervation. Curr Top Dev Biol. 2003. 57: 225-259. https://doi.org/10.1016/S0070-2153(03)57008-9
  46. Xie WR, Jen HI, Seymour ML, Yeh SY, Pereira FA, Groves AK, Klisch TJ, Zoghbi HY. An Atoh1-S193A Phospho-Mutant Allele Causes Hearing Deficits and Motor Impairment. J Neurosci. 2017. 37: 8583-8594. https://doi.org/10.1523/JNEUROSCI.0295-17.2017
  47. Yang H, Ryu J, Lim C, Choi JW, Park YJ, Jang SW, Shim S. SOXE group transcription factors regulates the expression of FoxG1 during inner ear development. Biochem Biophys Res Commun. 2022. 623: 96-103. https://doi.org/10.1016/j.bbrc.2022.07.048
  48. Yang L, O'Neill P, Martin K, Maass JC, Vassilev V, Ladher R, Groves AK. Analysis of FGF-dependent and FGF-independent pathways in otic placode induction. PLoS One. 2013. 8: e55011.
  49. Yang S, Xie BL, Dong XP, Wang LX, Zhu GH, Wang T, Wu WJ, Lai RS, Tao R, Guan MX, Chen FY, Tan DH, Deng Z, Xie HP, Zeng Y, Xiao ZA, Xie DH. cdh23 affects congenital hearing loss through regulating purine metabolism. Front Mol Neurosci. 2023. 16: 1079529.
  50. Zhong C, Fu Y, Pan W, Yu J, Wang J. Atoh1 and other related key regulators in the development of auditory sensory epithelium in the mammalian inner ear: function and interplay. Dev Biol. 2019. 446: 133-141. https://doi.org/10.1016/j.ydbio.2018.12.025
  51. Zine A, Fritzsch B. Early Steps towards Hearing: Placodes and Sensory Development. Int J Mol Sci. 2023. 24: 6994.