DOI QR코드

DOI QR Code

Analysis of Changes in the Phytochemical Content of Tartary Buckwheat Flowers and Seeds during the Post-flowering Growth

  • Jun Young Ha (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Hyeong-Hwan Lee (Gyeongnam AntiAging Research Institute) ;
  • Dong Yeol Lee (Gyeongnam AntiAging Research Institute) ;
  • Won Min Jeong (Gyeongnam AntiAging Research Institute) ;
  • Dong Gyu Jeong (Gyeongnam AntiAging Research Institute) ;
  • Hwan Hee Bae (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Mi-Jin Chae (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jinseok Lee (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Gun Ho Jung (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Sang Gon Kim (Gyeongnam AntiAging Research Institute)
  • Received : 2023.09.13
  • Accepted : 2023.09.25
  • Published : 2023.09.30

Abstract

Buckwheat (Fagopyrum esculentum), which is a traditional Korean crop, has been known as a health food due to its rich nutrition. This study was conducted to evaluate the change in flavonoid content of flowers and seeds during post-flowering growth of Korean tartary buckwheat variety 'Hwanggeummiso', with the aim of providing basic data for the development of functional food and feed additive. Tartary buckwheat took 69 and 99 days from the sowing date to reach the flowering and maturity stages, respectively. As a result of examining the flavonoid components of each part of tartary buckwheat, chlorogenic acid, rutin, and isoquercitrin of flowers increased from the flowering period on 22 May (0 days after flowering) to 42 days after flowering, while quercetin increased until 21 days after flowering and then decreased thereafter. In seeds, chlorogenic acid, rutin, and isoquercitrin were most abundant at the time of seed-bearing on 14 days after flowering, and showed a decreasing tendency thereafter. On the other hand, quercetin showed a tendency to increase until 21 days after flowering and then decrease. Overall, the flavonoid content was higher in flowers than in seeds, with rutin being particularly prominent. Based on this, the possibility as food materials and feed additives was confirmed using buckwheat produced in Korea.

Keywords

Acknowledgement

This study was conducted with support from the Rural Development Administration (PJ014155042021).

References

  1. Almuhayawi, M.S., Hassan, A.H.A., Abdel-Mawgoud, M., Khamis, G., Selim, S., Al Jaouni, S.K. and AbdElgawad, H. 2021. Laser light as a promising approach to improve the nutritional value, antioxidant capacity and anti-inflammatory activity of flavonoid-rich buckwheat sprouts. Food Chemistry. 345:128788. doi:10.1016/j.foodchem.2020.128788
  2. Arima, H., Ashida, H. and Danno, G. 2002. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Bioscience, Biotechnology, and Biochemistry. 66(5):1009-1014. doi:10.1271/bbb.66.1009
  3. Bieza, K. and Lois, R. 2001. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiology. 126(3):1105-1115. doi:10.1104/pp.126.3.1105
  4. Borovaya, S. and Klykov, A. 2020. Some aspects of flavonoid biosynthesis and accumulation in buckwheat plants. Plant Biotechnology Reports. 14:213-225. doi:10.1007/s11816-020-00614-9
  5. Cui, K., Guo, X., Tu, Y., Zhang, N., Ma, T. and Diao, Q. 2015. Effect of dietary supplementation of rutin on lactation performance, ruminal fermentation and metabolism in dairy cows. Journal of Animal Physiology and Animal Nutrition. 99(6):1065-1073. doi:10.1111/jpn.12334
  6. De Feo, V., Quaranta, E., Fedele, V., Claps, S., Rubino, R. and Pizza, C. 2006. Flavonoids and terpenoids in goat milk in relation to forage intake. Italian Journal of Food Science. 18(1):85-92.
  7. Dupuy, J., Larrieu, G., Sutra, J., Lespine, A. and Alvinerie, M. 2003. Enhancement of moxidectin bioavailability in lamb by a natural flavonoid: quercetin. Veterinary Parasitology. 112(4):337-347. doi:10.1016/S0304-4017(03)00008-6
  8. Holasova, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J. and Vavreinova, S. 2002. Buckwheat-the source of antioxidant activity in functional foods. Food Research International. 35(2-3):207-211. doi:10.1016/S0963-9969(01)00185-5
  9. Huda, M.N., Lu, S., Jahan, T., Ding, M., Jha, R., Zhang, K., Zhang, W., Georgiev, M.I., Park, S.U. and Zhou, M. 2021. Treasure from garden: Bioactive compounds of buckwheat. Food Chemistry. 335:127653. doi:10.1016/j.foodchem.2020.127653
  10. Kalber, T., Meier, J.S., Kreuzer, M. and Leiber, F. 2011. Flowering catch crops used as forage plants for dairy cows: Influence on fatty acids and tocopherols in milk. Journal of Dairy Science. 94(3):1477-1489. doi:10.3168/jds.2010-3708
  11. Kim, J.H., Sung, N.Y., Kwon, S.K., Jung, P.M., Choi, J.I., Yoon, Y.H., Song, B.S., Yoon, T.Y., Kee, H.J. and Lee, J.W. 2010. Antioxidant activity of stevia leaf extracts prepared by various extraction methods. Journal of the Korean Society of Food Science and Nutrition. 39(2):313-318. doi:10.3746/jkfn.2010.39.2.313
  12. Kim, J.W., Kim, J.K., Song, I.S., Kwon, E.S. and Youn, K.S. 2013. Comparison of antioxidant and physiological properties of Jerusalem artichoke leaves with different extraction processes. Journal of the Korean Society of Food Science and Nutrition. 42(1):68-75. doi:10.3746/jkfn.203.42.1.068
  13. Kim, S.J., Sohn, H.B., Hong, S.Y., Lee, J.N., Kim, K.D., Suh, J.T., Nam, J.H., Chang, D.C., Park, M.W. and Kim, Y.H. 2020. Construction of data system on seed morphological traits and functional component in tartary buckwheat germplasms. Korean Journal of Plant Resources. 33(5):446-459. doi:10.7732/kjpr.2020.33.5.446
  14. Kim, S.J., Zaidul, I., Suzuki, T., Mukasa, Y., Hashimoto, N., Takigawa, S., Noda, T., Matsuura-Endo, C. and Yamauchi, H. 2008. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chemistry. 110(4):814-820. doi:10.1016/j.foodchem.2008.02.050
  15. Kotsampasi, B., Christodoulou, V., Zotos, A., Liakopoulou-Kyriakides, M., Goulas, P., Petrotos, K., Natas, P. and Bampidis, V. 2014. Effects of dietary pomegranate byproduct silage supplementation on performance, carcass characteristics and meat quality of growing lambs. Animal Feed Science and Technology. 197:92-102. doi:10.1016/j.anifeedsci.2014.09.003
  16. Kuhnen, S., Moacyr, J.R., Mayer, J.K., Navarro, B.B., Trevisan, R., Honorato, L.A., Maraschin, M. and Pinheiro Machado Filho, L.C. 2014. Phenolic content and ferric reducing-antioxidant power of cow's milk produced in different pasture-based production systems in southern Brazil. Journal of the Science of Food and Agriculture. 94(15):3110-3117. doi:10.1002/jsfa.6654
  17. Kumar, S. and Pandey, A.K. 2013. Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal. 2013:162750. doi:10.1155/2013/162750
  18. Li, X., Park, N.I., Kim, Y.B., Kim, H.H., Park, C.H., Wu, Q. and Park, S.U. 2012. Accumulation of flavonoids and expression of flavonoid biosynthetic genes in tartary and rice-tartary buckwheat. Process Biochemistry. 47(12):2306-2310. doi:10.1016/j.procbio.2012.09.009
  19. Li, X., Park, N.I., Xu, H., Woo, S.H., Park, C.H. and Park, S.U. 2010. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum). Journal of Agricultural and Food Chemistry. 58(23):12176-12181. doi:10.1021/jf103310g
  20. Mariotti, M., Andreuccetti, V., Turchi, B., Liponi, G. and Tozzi, B. 2015. Forage production and nutritional characteristics of buckwheat as affected by maturity and conservation method. Agrochimica. 59(2):137-154. doi:10.12871/0021857201524
  21. Park, B.J., Kwon, S.M., Park, J.I., Chang, K.J. and Park, C.H. 2005. Phenolic compounds in common and tartary buckwheat. Korean Journal of Crop Science. 50:175-180.
  22. Park, B.J., Park, J.I., Chang, K.J. and Park, C.H. 2005. Comparison in rutin content of tartary buckwheat (Fagopyrum tataricum). Korean Journal of Plant Resources. 18:246-250.
  23. Peng, L.X., Wang, J.B., Hu, L.X., Zhao, J.L., Xiang, D.B., Zou, L. and Zhao, G. 2013. Rapid and simple method for the determination of emodin in tartary buckwheat (Fagopyrum tataricum) by high-performance liquid chromatography coupled to a diode array detector. Journal of Agricultural and Food Chemistry. 61(4):854-857. doi:10.1021/jf304804c
  24. Ren, Q., Wu, C., Ren, Y. and Zhang, J. 2013. Characterization and identification of the chemical constituents from tartary buckwheat (Fagopyrum tataricum Gaertn) by high performance liquid chromatography/photodiode array detector/linear ion trap FTICR hybrid mass spectrometry. Food Chemistry. 136(3-4):1377-1389. doi:10.1016/j.foodchem.2012.09.052
  25. Rural Development Administration (RDA). 2012. Agricultural science technology standards for investigation of research. pp. 366-385.
  26. Salem, H.B., Ates, S. and Keles, G. 2014. Boosting the role of livestock in the vulnerable production systems in North Africa and West Asia region. International Participated Small Ruminant Congress. p. 49.
  27. Song, C., Xiang, D.B., Yan, L., Song, Y., Zhao, G., Wang, Y.H. and Zhang, B.L. 2016. Changes in seed growth, levels and distribution of flavonoids during tartary buckwheat seed development. Plant Production Science. 19(4):518-527. doi:10.1080/1343943X.2016.1207485
  28. Steadman, K.J., Burgoon, M.S., Lewis, B.A., Edwardson, S.E. and Obendorf, R.L. 2001. Minerals, phytic acid, tannin and rutin in buckwheat seed milling fractions. Journal of the Science of Food and Agriculture. 81(11):1094-1100. doi:10.1002/jsfa.914
  29. Wu, X., Ge, X., Liang, S., Lv, Y. and Sun, H. 2015. A novel selective accelerated solvent extraction for effective separation and rapid simultaneous determination of six anthraquinones in tartary buckwheat and its products by UPLC-DAD. Food Analytical Methods. 8:1124-1132. doi:10.1007/s12161-014-9976-6
  30. Yao, P., Huang, Y., Dong, Q., Wan, M., Wang, A., Chen, Y., Li, C., Wu, Q., Chen, H. and Zhao, H. 2020. FtMYB6, a light-induced SG7 R2R3-MYB transcription factor, promotes flavonol biosynthesis in tartary buckwheat (Fagopyrum tataricum). Journal of Agricultural and Food Chemistry. 68(47):13685-13696. doi:10.1021/acs.jafc.0c03037
  31. Yao, Y., Xuan, Z., Li, Y., He, Y., Korpelainen, H. and Li, C. 2006. Effects of ultraviolet-B radiation on crop growth, development, yield and leaf pigment concentration of tartary buckwheat (Fagopyrum tataricum) under field conditions. European Journal of Agronomy. 25(3):215-222. doi:10.1016/j.eja.2006.05.004
  32. Yoon, S.J., Cho, N.J., Na, S.H., Kim, Y.H. and Kim, Y.M. 2006. Development of optimum rutin extraction process from Fagopyrum tataricum. Journal of the East Asian Society of Dietary Life. 16(5):573-577.
  33. Zhu, F. 2016. Chemical composition and health effects of Tartary buckwheat. Food Chemistry. 203:231-245. doi:10.1016/j.foodchem.2016.02.050
  34. Zhu, F. 2021. Buckwheat proteins and peptides: Biological functions and food applications. Trends in Food Science & Technology. 110:155-167. doi:10.1016/j.tifs.2021.01.081