DOI QR코드

DOI QR Code

A study on the development of mathematical competency test using manipulatives

수학 교과 역량 검사 도구 개발: 유아 및 초등 저학년 수준을 대상으로

  • Received : 2023.05.26
  • Accepted : 2023.07.28
  • Published : 2023.09.30

Abstract

As most countries place emphasis on competency-based education in mathematics to prepare for the future, it's important to create reliable testing instruments. The purpose of this study is to develop and validate a mathematical competency assessment tool that incorporates teaching aids. Initially, 16 stages of testing tools from K-1 to B-IV were developed for the validation process. Following this, a total of 6,430 lower elementary school students, including kindergarteners, were administered these assessment tools, and the completed results of 3,234 were analyzed. This study underscores that the developed assessment tools have proven to be valid and reliable in accurately reflecting students' mathematical competencies. Additionally, these tools, using teaching aids, were effective in engaging young students in the evaluation process and assessing their mathematical competencies accurately. The study concludes with a proposal for future research on the development of high-quality questions, teacher training, and the incorporation of more diverse teaching aids, including virtual manipulatives, for evaluating mathematical competencies in kindergarten and elementary school students.

이 연구의 목적은 교구를 활용한 수학 교과 역량 검사 도구를 개발하고 검증하는 것이다. 미래 교육을 대비하기 위하여 대부분의 나라에서 수학 교과 역량을 강조하고 있다. 수학 교과 역량 검사 도구 개발 및 검증을 위해, 우선 K-1부터 B-IV까지 16단계의 검사 도구를 개발하였다. 그리고 유치원부터 초등학교 저학년 학생 총 6430명을 대상으로 각 검사 도구를 수행하도록 하여 완료한 3234명의 결과를 분석하고 최종 검사 문항을 완성하였다. 연구 결과, 교구를 활용한 수학과 역량 검사 도구는 학생들의 수학 교과 역량을 적절히 반영한 평가를 할 수 있도록 타당도와 신뢰도를 확보하였다. 그리고 교구를 활용한 수학과 역량 검사 도구는 유치원부터 초등학교 저학년 학생들로 하여금 흥미 있게 평가에 참여하도록 하고 학생들의 수학 교과 역량을 평가하는데 효과적이다. 연구자들은 유치원과 초등학교 저학년 학생들의 수학 교과 역량을 평가하기 위하여 양질의 다양한 역량 검사 문항 개발 및 교사 연수 그리고 가상 교구를 포함한 보다 다양한 교구의 활용을 통한 역량 검사 도구에 대한 후속 연구를 제안하였다.

Keywords

Acknowledgement

이 논문은 (주)타임교육 C&P의 지원을 받아 수행하였음.

References

  1. Kang, M. S., & So, M. H. (2020). Development and validation of college students' core competency assessment: Based on the case of S University. Journal of the Korea Academia-Industrial Cooperation Society, 21(4), 236-247.  https://doi.org/10.5762/KAIS.2020.21.4.236
  2. Ko, S. S. (2020). A study on gender differences by the treatment program(UTF) for reducing math anxiety. Journal of KSMS, 23(1), 111-127. 
  3. Ko, S. S., Park, M. G., Han, H. S., Hong, Y. Y., Lee, S. Y., Joo, H. Y., Lee, C. Y., Chae, E. S., & Lee, K. S. (2013). Establishment of evaluation base using manipulatives and engineering tools. Journal of Kofac, 2013-6. 
  4. Ministry of Education (2022a). General summary of the 2022 revised curriculum. Sejong: Ministry of Education.
  5. Ministry of Education (2022b). General summary of the 2022 revised curriculum. Sejong: Ministry of Education.
  6. Kim, M. S., Choi, S. D., Cha, S. H., Cho, S. M., Ha, Y. M., Kim, K. E., & Baek, M. J. (2012). Indicators and measures of creative competency. Journal of KEDI, RR 2012-10. 
  7. Min, Y, S., Lee, K. W., Lee, J. Y., Lee, S. M., Jeon, H. J., On, J. D., Park, C. E., Lim, Y. N., Hong, O. S., Yoo, Y. S., Park, S. J., Song, H. H., Kim, H. S., Lee, G. J., Lee, Y. H., Park, S. Y., Jo, E. J., & Yeom, G. Y. (2022). 2022 revised curriculum details (teaching/learning and assessment) coordination study. Journal of the Korea Institute for Curriculum and Evaluation, CRC 2022-16. 
  8. Park, M. G., Ko, S. S., Jung, I. C., & Kim, E. Y. (2010). The effect of the use of geometry manipulatives on spatial perception ability. Journal of KSMS, 13(2), 303-322. 
  9. Park, H. Y. (2021). Posthuman learning theory in the 4th industrial revolution and artificial intelligence era. Jeonbuk: Chonbuk National University Publication Center. 
  10. Seong, T. J. (2002). Theory and practice of item production and analysis. Seoul: Hakjisa. 
  11. Ahn, S. J., Choi, S. Y., & Song, E. Y. (2020). A study on the development and utilization of new block Manipulatives to improve children's mathematical thinking ability. Early Childhood Education Research, 40(3), 281-301. 
  12. Lee, J. H., & Jeon, Y. J. (2019). An analysis about narrative of weights and measures in Korean elementary mathematics textbooks, Journal of KSMS, 11(3), 183-197. 
  13. Lee, J. H., Jung, J. Y., & Jung, Y. S. (2021). AI education revolution. Seoul: Siwon Books. 
  14. Akkus, M. (2016). The common core state standards for mathematics. International Journal of Research in Education and Science (IJRES), 2(1), 49-54.  https://doi.org/10.21890/ijres.61754
  15. Cave, P. (2023). School curriculum reform in contemporary Japan: Competencies, subjects, and the ambiguities of PISA. Comparative Education. https://doi.org/10.1080/03050068.2023.2208455 
  16. Clements, D. H., & Sarama, J. (2021). Learning and teaching early math: The learning trajectories approach. NY: Routledge. 
  17. Common Core State Standards for Mathematics (CCSSM) (2010). Common core state standards for mathematics. National Governers Association Center for Best Practices & Council of Chief School Officers. Washington, DC: Authors. 
  18. Cullen-Lester, K. L., Kim, Y., & Kim, O. (2019). A cognitive diagnosis approach to mathematics assessment. Educational Measurement: Issues and Practice, 38(4), 21-30. 
  19. Department of Education of United Kingdom (2021). National curriculum in England: Mathematics programmes of study. https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study/national-curriculum-in-england-mathematics-programmes-of-study 
  20. Fuson, K. C., & Hall, J. W. (1983). The acquisition of early number word meanings: A conceptual analysis and review. In H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 49-106). Academic Press. 
  21. Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2013). Adolescents' functional numeracy is predicted by their school entry number system knowledge. PLoS ONE, 8(3), e54651. https://doi.org/10.1371/journal.pone.0054651 
  22. Greenberg, J., Eshel, N., & Fein, S. (2015). Cognitive predictors of mathematical performance in elementary school children. Journal of Experimental Child Psychology, 131, 29-49. https://doi.org/10.1016/j.jecp.2014.10.003 
  23. Huizinga, J. (1949). Homo ludens: A study of the play-element in culture. London: Routledge & Kegan Paul. 
  24. Hur, J., Park, J. S., Park, G. Y., & Kim, J. K. (2020). Measuring mathematical reasoning abilities in middle school students: Development and validation of a test instrument. Learning and Individual Differences, 80, 101874. https://doi.org/10.1016/j.lindif.2020.101874 
  25. Kamii, C. (2000). Young children reinvent arithmetic: Implications of Piaget's theory. New York, NY: Teachers College. 
  26. Kim, M., & Clements, D. H. (2018). The effects of virtual manipulatives on kindergarten students' mathematics learning. Journal of Educational Computing Research, 55(2), 147-166. 
  27. Lappan, G. (1999). 'Mathematics for All' must include high-ability and highly motivated students. NCTM News Bulletin, March, 1999. 
  28. Lee, H., Lee, J., Lee, M., Lee, J., & Lee, K. (2019). Developing low-cost smart toys for children's mathematics education. Interactive Learning Environments, 27(7), 907-919. 
  29. Liu, Y., Zhang, J., & Li, Y. (2019). Measuring mathematical competence: A systematic review and meta-analysis. Educational Measurement and Evaluation Review, 10(1), 1-31. https://doi.org/10.1108/emer-11-2018-0039 
  30. National Governors Association and the Council of Chief State School Officers (2010). Common core state standards for mathematics. Washington, DC: Author. 
  31. Organisation for Economic Co-operation & Development (OECD). (2018). The future of education and skills: Education 2030. https://www.oecd.org/education/2030-project/about/documents/E2030%20Position%20Paper%20(05.04.2018).pdf 
  32. Organisation for Economic Co-operation & Development (OECD). (2019). PISA 2018 Assessment and analytical framework: Mathematics, reading, science, and financial literacy. Paris: OECD Publishing. https://doi.org/10.1787/b25efab8-en 
  33. Piaget, J. (1964). Development and learning. Journal of Research in Science Teaching, 2(3), 176-186.  https://doi.org/10.1002/tea.3660020306
  34. Saenz-Lopez, P., Fernandez-Balboa, J. M., & Munoz-Catalan, M. C. (2018). A new measurement instrument to assess mathematical competence in primary education. International Journal of Science and Mathematics Education, 16(1), 75-97. https://doi.org/10.1007/s10763-016-9778-5 
  35. Smith, J. R. (2018). Mathematical competencies and higher education. Springer. 
  36. TIMSS & Pirls (2022). TIMSS 2019 international results in mathematics and science. https://timss2019.org/reports/ 
  37. TIMSS & Pirls (2023). The mathematics curriculum in primary and lower secondary grades, Singapore. https://timssandpirls.bc.edu/timss2015/encyclopedia/countries/singapore/the-mathematics-curriculum-in-primary-and-lower-secondary-grades/ 
  38. van de Walle, J. A., karp, K. D., & Bay-williams, J. M. (2019). Elementary and middle school mathematics: Teaching developmentally. Hudson Street, NY: Pearson. 
  39. van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1), 9-35. https://doi.org/10.1023/B:EDUC.0000005212.03219.dc 
  40. Yoon, H. J., & Lee, K. (2021). Exploring the use of maker education for developing mathematical creativity in young children. Educational Technology Research and Development, 69(4), 1955-1977.  https://doi.org/10.1007/s11423-020-09930-x