DOI QR코드

DOI QR Code

Mathematics Inquiring Based on Pattern Similarity

  • Yanhui Xu (Department of Mathematics, Wenzhou University)
  • Received : 2023.02.10
  • Accepted : 2023.04.21
  • Published : 2023.09.30

Abstract

Mathematics is a science of pattern. Mathematics is a subject of inquiring which aims at discovering the models hidden behind the world. Pattern is abstraction and generalization of the model. Mathematical pattern is a higher level of mathematical model. Mathematics patterns are often hidden in pattern similarity. Creation of mathematics lies largely in discovering the pattern similarity among the various components of mathematics. Inquiring is the core and soul of mathematics teaching. It is very important for students to study mathematics like mathematicians' exploring and discovering mathematics based on pattern similarity. The author describes an example about how to guide students to carry out mathematics inquiring based on pattern similarity in classroom.

Keywords

References

  1. Artigue, M., & Blomhoej, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM - The International Journal on Mathematics Education, 45(6), 797-810. https://doi.org/10.1007/s11858-013-0506-6
  2. Beziau, J.-Y. (2018). An analogical hexagon. International Journal of Approximate Reasoning, 94, 1-17. https://doi.org/10.1016/j.ijar.2017.12.004
  3. Bransford, J. D., Zech, L., Schwartz, D., Barron, B., Vye, N., & The Cognition and Technology Group at Vanderbilt University. (1996). Fostering mathematical thinking in middle school students: Lessons from research. In R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 203-250). Lawrence Erlbaum Associates.
  4. Chamberlin, S., & Moon, S. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. Journal of Secondary Gifted Education, 17(1), 37-47. https://doi.org/10.4219/jsge-2005-393
  5. Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for a mathematics curriculum. Journal of Mathematical Behavior, 15(4), 375- 402. https://doi.org/10.1016/S0732-3123(96)90023-1
  6. Davis, R.B. (1984). Learning mathematics: The cognitive science approach to mathematics education. Croom Helm.
  7. Deng, D. (1990). Mathematics and culture. Peking University Press. (In Chinese)
  8. Department of Education and Science. (1987). Mathematics from 5 to 16, curriculum matters (2nd ed.). HMSO.
  9. Devlin, K. (2003). Mathematics: The science of patterns. Owl Books.
  10. Doerr, H. M., & English, L. D. (2003). A modeling perspective on students' mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2), 110-136. https://doi.org/10.2307/30034902
  11. Dreyfus, T., & Eisenberg, T. (1996). On different facets of mathematical thinking. In R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 253-284). Lawrence Erlbaum.
  12. English, L. D. (2006). Mathematical modeling in the primary school: Children's construction of a consumer guide. Educational Studies in Mathematics, 63(3), 303-323. https://doi.org/10.1007/s10649-005-9013-1
  13. Ginsburg, H. P. (1996). Toby's math. In R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 175-282). Lawrence Erlbaum.
  14. Glas, E. F. (2002). Klein's model of mathematical creativity. Science and Education, 11, 95-104. https://doi.org/10.1023/A:1013075819948
  15. Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155-177. https://doi.org/10.1207/s15327833mtl0102_4
  16. Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform mathematics education. Mathematical Thinking and Learning, 6(2), 105-128. https://doi.org/10.1207/s15327833mtl0602_3
  17. Gravemeijer, K. (2007). Emergent modelling as a precursor to mathematical modelling. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (New ICMI Study Series, Vol. 10) (pp. 137-144). Springer. https://doi.org/10.1007/978-0-387-29822-1_12
  18. Gravemeijer, K., & Stephan, M. (2002). Emergent models as an instructional design heuristic. In K. Gravemeijer, R. Lehrer, B. V. Oers, & L. Verschafel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 145-170). Springer Science & Business. https://doi.org/10.1007/978-94-017-3194-2_10
  19. Hardy, G. H. (1992). A mathematician's apology. Cambridge University Press.
  20. Hargreaves, M., Diane, S-T. & John, T. (1998). Children's strategies with number patterns. Educational Studies, 24(3), 315-331. https://doi.org/10.1080/0305569980240305
  21. Hernandez, M. L., Lavy, R., Felton-Koestler, M. D., & Zbiek, R. M. (2017). Mathematical modelling in the high school curriculum. Mathematics Teacher, 110(5), 336-342. https://doi:10.5951/mathteacher.110.5.0336
  22. Highland, E. H., & Highland, H. J. (1961). The how and why wonder book of mathematics. Grosset & Dunlop.
  23. Kaiser, G., Blum, W., Borromeo Ferri, R., & Stillman, G. (Eds.) (2011). Trends in teaching and learning of mathematical modelling.
  24. Kapur, J. N. (1973). Thought on nature of mathematics. Atma Ram & Sons, Delhi.
  25. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge University Press.
  26. Lehrer, R., Kobiela, M. & Weinberg, P. J. (2013). Cultivating inquiry about space in a middle school mathematics classroom. ZDM-The International Journal on Mathematics Education, 45(3), 365-376. https://doi.org/10.1007/s11858-012-0479-x
  27. Lehrer, R., & Schauble, L. (2000). Inventing data structures for representational purposes: Elementary grade students' classification models. Mathematical Thinking and Learning, 2 (1 & 2), 51-74. https://doi.org/10.1207/S15327833MTL0202_3
  28. Lesh, R., & Lamon, S. (1992). Assessing authentic mathematical performance. In R. Lesh & S. J. Lamon (Eds.), Assessment of authentic performance in school mathematics (pp. 17-62). American Association for the Advancement of Science.
  29. Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.), Handbook of research in mathematics and science education (pp. 113-149). Lawrence Erlbaum and Associates.
  30. Lesh, R., & Doerr, H. M. (Eds.) (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving learning, and teaching. Lawrence Erlbaum Associates.
  31. Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2-3), 157-189. https://doi.org/10.1080/10986065.2003.9679998
  32. Lesh, R. & Lehrer, R. (2003). Models and modeling perspectives on the development of students and teachers, Mathematical Thinking and Learning, 5(2-3), 109-129. https://doi.org/10.1080/10986065.2003.9679996
  33. Lesh, R. (2006). New directions for research on mathematical problem solving. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures and learning spaces. Proceedings of the 29th annual conference of the mathematics education research group of Australasia, Canberra (Vol. 1, pp. 15-34). MERGA.
  34. Maass, K. & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: A synthesis. ZDM-The International Journal on Mathematics Education, 45(6), 779-795. https://doi.org/10.1007/s11858-013-0528-0
  35. Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra (pp. 65-86). Kluwer.
  36. Menezes, L., Oliveira, H., & Canavarro, A. (2015). Inquiry-Based Mathematics Teaching: The Case of Celia. InU. Gellert, J. Gimenez Rodriguez, C. Hahn, & S. Kafoussi (Eds.), Educational Paths to Mathematics (pp. 305-321). Springer. https://doi.org/10.1007/978-3-319-15410-7_20
  37. Mulligan, J. & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33-49. https://doi.org/10.1007/BF03217544
  38. NCTM. (2000). Principles and standards for school mathematics. NCTM. Retrieved from https://www.nctm.org/standards/content.aspx?id=16909
  39. Polya, G. (1954). Mathematics and plausible reasoning (Volume 2): Patterns of plausible inference. Princeton University Press.
  40. Polya, G. (1962). Mathematical discovery on understanding, learning, and teaching pro blem solving (Volume 1). John Wiley.
  41. Reys, R. E., Suydam, M. N. & Lindquist, M. M. (1984). Helping children learn mathematics. Prentice-Hall.
  42. Richards, J. (1991). Mathematical discussions. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 13-52). Kluwer.
  43. Sawyer, W.W. (2005). Prelude to mathematics. Commonwealth Publishers.
  44. Sevinc, S. (2022). Toward a reconceptualization of model development from models-and-modeling perspective in mathematics education. Educational Studies in Mathematics, 109(3), 611-638. https://doi.org/10.1007/s10649-021-10096-3
  45. Siegel, M., & Borasi, R. (1994). Demystifying mathematics education through inquiry. In P. Ernest (Ed.), Constructing mathematical knowledge: Epistemology and mathematical education (pp. 201-215). Routledge.
  46. Singer, F. M., Ellerton, N., & Cai, J. (2013). Problem-posing research in mathematics education: New questions and directions. Educational Studies in Mathematics, 83(1), 1-7. https://doi.org/10.1007/s10649-013-9478-2.
  47. Skemp, R. (1986). The psychology of learning mathematics. Penguin Books.
  48. Speer, N. M., & Wagner, J. F. (2009). Knowledge needed by a teacher to provide analytic scaffolding during undergraduate mathematics classroom discussions. Journal for Research in Mathematics Education, 40(5), 530-562. https://doi.org/10.2307/40539355
  49. Sriraman, B. (2003). Mathematical giftedness, problem solving, and the ability to formulate generalizations: The problem-solving experiences of four gifted students. The Journal of Secondary Gifted Education, 14(3), 151-165. https://doi.org/10.4219/jsge-2003-425
  50. Sriraman, B. (2004). Discovering a mathematical principle: The case of Matt. Mathematics in School, 33(2), 25-31. https://doi.org/10.2307/30215679
  51. Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM-The International Journal on Mathematics Education, 41(1-2), 13-27. https://doi.org/10.1007/s11858-008-0114-z
  52. Steen, L. A. (1988). The science of patterns. Science, 240(29), 611-616. https://doi.org/10.1126/science.240.4852.611
  53. Steinbring, H. (2005). The construction of new mathematical knowledge in classroom interaction. An epistemological perspective. Springer.
  54. Van De Walle, J. A. (1998). Elementary and middle School mathematics (3rd Ed.). Addison Wesley Longman.
  55. Vogel, R. L. (2005). Patterns - A fundamental idea of mathematical thinking and learning. ZDM-The International Journal on Mathematics Education, 37(5), 445-449. https://doi.org/10.1007/s11858-005-0035-z
  56. von Glaserfeld, E. (1991). Introduction. In E. von Glaserfeld (Ed.), Radical constructivism in mathematics education (pp. xiii-xx). Kluwer.
  57. Warren, E. (2005). Young children's ability to generalise the pattern rule for growing patterns. In H. Chick & J. Vincent (Eds.), Proceedings of the 29th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 305-312). Program Committee.
  58. Xu, L., & Zheng, Y. (1990). Philosophical basis of mathematical pattern. Philosophical Research, 25(2), 74-81. https://doi.org/CNKI:SUN:ZXYJ.0.1990-02-010 (In Chinese)