DOI QR코드

DOI QR Code

A Study on Anti-inflammatory and Antioxidant Effect of Fraxinus rhynchophylla Using Carbohydrate-Hydrolyzing Enzymes

당분해효소를 이용한 물푸레나무 효소처리물의 항염 및 항산화 효능 연구

  • Hye Won Lee (Skin & Natural Products Lab., Kolmar Korea Co., Ltd.) ;
  • You Ah Kim (Skin & Natural Products Lab., Kolmar Korea Co., Ltd.) ;
  • Byoung Jun Park (Skin & Natural Products Lab., Kolmar Korea Co., Ltd.) ;
  • Sang Keun Han (Skin & Natural Products Lab., Kolmar Korea Co., Ltd.)
  • 이혜원 (한국콜마(주) 피부천연물연구소) ;
  • 김유아 (한국콜마(주) 피부천연물연구소) ;
  • 박병준 (한국콜마(주) 피부천연물연구소) ;
  • 한상근 (한국콜마(주) 피부천연물연구소)
  • Received : 2023.08.14
  • Accepted : 2023.09.21
  • Published : 2023.09.30

Abstract

Fraxinus rhynchophylla Hance (F. rhynchophylla) is a traditional medicinal plant that has been widely used in East Asia and has been used for chronic bronchitis, bacterial dysentery and improved eyesight. F. rhynchophylla contains various type of coumarins such as esculin, esculetin, fraxin and fraxetin. Esculetin possesses versatile activities including antioxidant, anti-inflammatory, antimicrobial, anticancer properties and improvement of atopic dermatitis. However, there is no research on the process of increasing active components in F. rhynchophylla. The objectives of the present study were to apply biotransformation technology to F. rhynchophylla for increasing the content of esculetin, and enhancing anti-inflammatory and antioxidant activities. F. rhynchophylla extract (FRE) treated with viscozyme L (FRE-VL) showed 3.1 times higher content of esculetin than FRE, and exhibited effects such as increased anti-inflammatory activity and DPPH radical scavenging activity. Based on the these results, it is concluded that biotransformed FRE-VL could be potentially applicable as a new active ingredient in the cosmetic field.

물푸레나무(Fraxinus rhynchophylla Hance, F. rhynchophylla)는 동아시아에서 널리 사용되어 온 전통적인 약용 식물로, 만성 기관지염, 세균성 이질과 시력 개선 등을 위해 사용돼 왔다. 물푸레나무에는 esculin, esculetin, fraxin 및 fraxetin과 같은 다양한 형태의 쿠마린이 존재하며, esculetin은 항산화, 항염, 항균, 항암 및 아토피성 피부 염증 완화 등의 효과를 가지고 있다. 지금까지 물푸레나무 내 유효 성분을 증가시키는 공정개발에 관한 연구는 보고되지 않았다. 따라서 본 연구의 목적은 물푸레나무 내 esculetin함량을 증가시키고, 항염 및 항산화 효능을 증대시키기 위한 물푸레나무 생물전환 공정을 개발하는 것이다. 당분해효소 viscozyme L을 이용하여 물푸레나무에 처리한 결과 물푸레나무 효소처리물(FRE-VL)은 물푸레나무 추출물(FRE)대비 esculetin 함량이 3.1배 증가하였으며, 항염 활성 증대와 DPPH 라디칼 소거 활성의 효과를 나타내었다. 본 연구를 통해 화장품 분야에서 생물전환 기술을 적용한 물푸레나무 효소처리물의 신규 화장품 기능성 소재로의 활용 가능성을 확인하였다.

Keywords

References

  1. N. Y. Kim, H. O. Pae, Y. S. Ko, J. C. Yoo, B. M. Choi, C. D. Jun, H. T. Chung, M. Inagaki, R. Higuchi, and Y. C. Kim, In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla, Planta Med., 65(07), 656 (1999).
  2. K. Xiao, Q. H. Song, S. W. Zhang, and L. J. Xuan, Water-soluble constituents of the root barks of Fraxinus rhynchophylla (Chinese drug Qinpi). J. Asian Nat. Prod. Res., 10(2), 205 (2008).
  3. Z. B. Wu, Y. Liu, S. S. Tian, and C. Wen, Chemical constituents of the stem bark of Fraxinus rhynchophylla, Chem. Nat. Compd., 49, 1162 (2014).
  4. C. L. Si, Y. Zhang, Z. Y. Zhu, J. Xu, J. K. Kim, and Y. S. Bae, Isolation and structure elucidation of secoiridoid glucosides from Fraxinus rhynchophylla leaves, Chem. Nat. Compd., 45, 814 (2009).
  5. B. R. Kim, J. S. Lee, D. Y. Kim, B. K. Kim, H. S. Lee, S. W. Lee, H. J. Kwon, Antioxidant and antibacterial activities of the bark of Fraxinus rhynchophylla Hance, Kor. J. Aesthet. Cosmetol,, 13(3), 339 (2015).
  6. N. H. Jeong, E. J. Yang, M. Jin, J. Y. Lee, Y. A. Choi, P. H. Park, S. R. Lee, S. U. Kim, T. Y. Shin, T. K. Kwon, Y. H. Jang, K. S. Song, and S. H. Kim, Esculetin from Fraxinus rhynchophylla attenuates atopic skin inflammation by inhibiting the expression of inflammatory cytokines, Int. Immunopharmacol., 59, 209 (2018).
  7. H. J. Kang, J. W. Lee, T. W. Park, H. Y. Park, and J. Park, Biotransformation of ginsenoside Rd from red ginseng saponin using commercial β-glucanase, J. Soc. Cosmet. Sci. Korea, 46(4), 349 (2020).
  8. S. H. Yeom, M. H. Kang, J. H. Park, S. H. Kim, and J. W. Kim, A study on antioxidant, skin-whitening and UV absorption effect of Beta vulagaris using Lactiplantibacillus plantarum SM4, J. Soc. Cosmet. Sci. Korea, 48(3), 225 (2022).
  9. S. C. Ahn, M. S. Kim, S. H. Lee, J. H. Kang, B. H. Kim, W. K. Oh, B. Y. Kim, and J. S. Ahn, Increase of bioactive flavonoid aglycone extractable from Korean citrus peel by carbohydrate-hydrolysing enzymes, Microbiol. Biotechnol. Lett., 33(4), 288 (2005).
  10. J. S. Hyon, S. M. Kang, M. Senevirathne, W. J. Koh, T. S. Yang, M. C. Oh, C. K. Oh, Y. J. Jeon, and S. H. Kim, Antioxidative activities of enzymatic digests from dried Citrus unshiu and Citrus grandis peels, Korean J. Food Sci. Technol., 26(1), 18 (2010).
  11. E. Shin, K. M. Choi, H. S. Yoo, C. K. Lee, B. Y. Hwang, and M. K. Lee, Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells, Biol. Pharm. Bull., 33(9), 1610 (2010).
  12. Y. D. Hong, M. H. Nam, C. S. Lee, S. S. Shin, and Y. H. Park, Depigmenting effects of esculetin and esculin isolated from Fraxinus rhynchophylla Hance, J. Soc. Cosmet. Sci. Korea, 40(1), 89 (2014).
  13. P. T. Thuong, T. M. Hung, T. M. Ngoc, D. T. Ha, B. S. Min, S. J. Kwack, T. S. Kang, J. S. Choi, and K. H. Bae, Antioxidant activities of coumarins from Korean medicinal plants and their structure-activity relationships, Phytother. Res., 24(1), 101 (2010).
  14. J. H. Kwak, Y. Kim, C. E. Staatz, and I. Baek, Oral bioavailability and pharmacokinetics of esculetin following intravenous and oral administration in rats, Xenobiotica, 51(7), 811 (2021).
  15. S. S. Garg, J. Gupta, D. Sahu, and C. J. Liu, Pharmacological and therapeutic applications of esculetin, Int. J. Mol. Sci., 23(20), 12643 (2022).
  16. V. Veena, P. Poornima, R. Parvatham, and K. Kalaiselvi, Isolation and characterization of β-glucosidase producing bacteria from different sources, Afr. J. Biotechnol., 10(66), 14891 (2011).
  17. D. C. LeBert, A. Huttenlocher, Inflammation and wound repair, Semin. Immunol., 26(4), 315 (2014).
  18. D. A. Yanez, R. K. Lacher, A. Vidyarthi, and O. R. Colegio, The role of macrophages in skin homeostasis, Pflug. Arch. Eur. J. Physiol., 469(3-4), 455 (2017).
  19. J. MacMicking, Q. Xie, and C. Nathan, Nitric oxide and macrophage function, Annu. Rev. Immunol., 15(1), 323 (1997).
  20. D. Bruch-Gerharz, T. Ruzicka, and V. Kolb-Bachofen, Nitric oxide and its implications in skin homeostasis and disease-a review, Arch. Dermatol. Res., 290(12), 643 (1998).
  21. N. Puizina-Ivic, Skin aging, Acta Dermatovenerol. Alp. Pannonica Adriat., 17(2), 47 (2008).
  22. L. Packer, Ultraviolet radiation (UVA, UVB) and skin antioxidants, New Compr. Biochem., 28, 239 (1994).
  23. T. Brioche and S. Lemoine-Morel, Oxidative stress, sarcopenia, antioxidant strategies and exercise: molecular aspects, Curr. Pharm. Des., 22(18), 2664 (2016).
  24. G. M. Williams, C. X. Wang, and M. J. Iatropoulos, Toxicity studies of butylated hydroxyanisole and butylated hydroxytoluene. II. Chronic feeding studies, Food Chem. Toxicol., 28(12), 799 (1990).
  25. H. Masaki, S. Sakaki, T. Atsumi, and H. Sakurai, Active-oxygen scavenging activity of plant extracts, Biol. Pharm. Bull., 18(1), 162 (1995).
  26. R. Kahl, Synthetic antioxidants: biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens, Toxicology, 33(3-4), 185 (1984).