DOI QR코드

DOI QR Code

Impact of Oxygen Annealing on Deep-level Traps in Ga2O3/SiC Photodetectors

산소 후열처리에 따른 Ga2O3/SiC photodetector의 전기 광학적 특성

  • Seung-Hwan Chung (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Tae-Hee Lee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Soo-Young Moon (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Se-Rim Park (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Hyung-Jin Lee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Geon-Hee Lee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Dept. of Electronic materials Engineering, Kwangwoon University)
  • Received : 2023.08.25
  • Accepted : 2023.09.26
  • Published : 2023.09.30

Abstract

In this work, we investigated the role of oxygen annealing on the performance of Metal-Semiconductor-Metal (MSM) UV photodetector (PD) fabricated by radio frequency (RF)-sputtered Ga2O3 films on SiC substrates. Oxygen-nnealed Ga2O3 films displayed a notable increase in photocurrent and a faster decay time, indicating a decrease in persistent photoconductivity. This improvement is attributed to the reduction of oxygen vacancies and variation of defects by oxygen post-annealing. Our findings provide valuable insights into enhancing PD performance through oxygen annealing.

본 연구에서는 radio frequency (RF)-스퍼터링을 이용하여 SiC 기판 위에 Ga2O3 박막을 증착하여 Metal-Semiconductor-Metal (MSM) UV photodetector (PD)를 제작하였고, 산소 후열처리에 따른 PD 성능을 연구하였다. 산소 후열처리된 Ga2O3 박막은 외부 광에 대한 전류의 상당한 증가와 시간 의존성 on/off 광 응답 특성에서 측정된 감소시간이 1.21, 1.12 s로 후열처리를 하지 않은 박막의 감소시간인 1.34, 3.01 s 보다 더 빠른 반응을 보여주었다. 이러한 특성은 산소 후열처리 후의 산소 공공 및 결함 분포 변화에 기인한다. 우리의 연구 결과는 산소 후열처리가 PD 성능 향상에 영향을 미칠 수 있다는 것을 확인하였다.

Keywords

Acknowledgement

This work was supported by the Korea Institute for Advancement of Technology (KIAT) (P0012451), the National Research Foundation (NRF) funded by the Korea government(MSIT)(2021R1F1A1057620), and a research grant from Kwangwoon university in 2023.

References

  1. Baliga, B. J., "Fundamentals of power semiconductor devices," Springer Science & Business Media. 2010. DOI: 10.1007/978-0-387-47314-7
  2. S. J. Peatron, "A review of Ga2O3 materials, processing, and devices," Applied physics Reviews, Vol..5, pp.011301, 2018. DOI: 10.1063/1.5006941
  3. Zhang, Hao, et al. "Structural and optical properties of Nb-doped β-Ga2O3 thin films deposited by RF magnetron sputtering," Vacuum 146, pp.93-96. 2017. DOI: 10.1016/j.vacuum.2017.09.033
  4. Huang, Lu, et al. "Comparison study of β-Ga2O3 photodetectors grown on sapphire at different oxygen pressures," IEEE Photonics Journal, vol.9, no.4, pp.1-8, 2017. DOI: 10.1109/JPHOT.2017.2731625
  5. Lee, Young-Jae, et al. "Effect of Oxygen Annealing on the Characteristics of Isotype Ga2O3/4H-SiC Heterojunction Diodes," Journal of Nanoelectronics and Optoelectronics, vol.15. no.5, pp.561-565, 2020. DOI: 10.1166/jno.2020.2826.
  6. Zhang, Z., et al. "Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy," Applied Physics Letters, vol.108, no.5, 2016. DOI: 10.1063/1.4941429
  7. Farzana, Esmat, et al. "Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy," Journal of Applied Physics, vol.123, no.16, 2018. DOI: 10.1063/1.5010608
  8. Farzana, Esmat, et al. "Impact of deep level defects induced by high energy neutron radiation in β-Ga2O3." Apl Materials, vol.7, no.2,
  9. Shen, Zhenghao, et al. "The effect of oxygen annealing on characteristics of β-Ga2O3 solar-blind photodetectors on SiC substrate by ion-cutting process," Journal of Alloys and Compounds 889, pp.161743, 2021. DOI: 10.1063/1.5054606
  10. Makula, Patrycja, Michal Pacia, and Wojciech Macyk. "How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra," The journal of physical chemistry letters vol.9, no.23, pp.6814-6817, 2018. DOI: 10.1021/acs.jpclett.8b02892
  11. Gan, Kai-Jhih, et al. "Highly durable and flexible gallium-based oxide conductive-bridging random access memory," Scientific reports, vol.9, no.1, 14141, 2019. DOI: 10.1038/s41598-019-50816-7.
  12. Chu, Shao-Yu, et al. "Investigation of Ga2O3-based deep ultraviolet photodetectors using plasma-enhanced atomic layer deposition system," Sensors, vol.20, no.21, 6159, 2020. DOI: 10.3390/s20216159
  13. Qin, Yuan, et al. "Review of deep ultraviolet photodetector based on gallium oxide," Chinese Physics B, vol.28, no.1, pp.018501, 2019. DOI: 10.1088/1674-1056/28/1/018501
  14. Zhang, Meng, et al. "High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films," Scientific reports, vol.8, no.1, 11157, 2018. DOI: 10.1038/s41598-018-29147-6
  15. Liu, Zeng, et al. "Synergetic Effect of Photoconductive Gain and Persistent Photocurrent in a High-Photo-response Ga2O3 Deep-Ultraviolet Photodetector," IEEE Transactions on Electron Devices, vol.69, no.10, pp.5595-5602, 2022.
  16. Lang, D. V. "Deep-level transient spectroscopy: A new method to characterize traps in semiconductors," Journal of applied physics, vol.45, no.7, pp.3023-3032, 1974. DOI: 10.1063/1.1663719
  17. Feng, Zhaoqing, et al. "Influence of annealing atmosphere on the performance of a β-Ga 2 O 3 thin film and photodetector," Optical Materials Express, vol.8, no.8, pp.2229-2237 2018. DOI: 10.1364/OME.8.002229